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Abstract. On smart-cards, Elliptic Curve Cryptosystems (ECC) can be vulnerable to Side
Channel Attacks such as the Re�ned Power Analysis (RPA). This attack takes advantage of the
apparition of special points of the form (0, y). In this paper, we propose a new countermeasure
based on co-Z formulæ and an extension of the curve isomorphism countermeasure. It permits
to transform the base point P = (x, y) into a base point P ′ = (0, y′), which, with −P ′, are
the only points with a zero X-coordinate. In such case, the RPA cannot be applied. Moreover,
the cost of this countermeasure is very low compared to other countermeasures against RPA.
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1 Introduction

The use of elliptic curves for cryptographic applications has been introduced by Koblitz [17]
and Miller [23]. Elliptic Curve Cryptosystems (ECC) have gained much importance in smart-
cards devices because of their better speed and low memory constraints compared to other
asymmetric cryptosystems such as RSA.

The main operation on ECC is the computation of an elliptic curve scalar multiplication
(ECSM), that is the computation of d ·P for an integer d and a point P on an elliptic curve.
The cryptographic security of ECC is based on the elliptic curve discrete logarithm problem
(ECDLP), which asks to compute d given Q = d · P and P .

An ECSM is generally based on addition and doubling formulæ of points. Meloni points
that addition formulæ of two points of an elliptic curve is more e�cient if they share the
same Z-coordinate [21]. He brought new formulæ, called co-Z formulæ, that can be used to
perform an ECSM with addition chains and Zeckendorf representation.

Meloni's formulæ were adapted in [8,10,9] so that they might be usable with traditional
ECSM algorithms such as the right-to-left signed-digit method, the Montgomery Powering
Ladder [16], or the Joye's double-add method [14].

In this paper, we are interested on the security against Side Channel Attacks. We present
alternative co-Z formulæ using an extension of the curve isomorphism countermeasure [15].
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The new co-Z formulæ allow to perform an ECSM that can be secured against SPA [18],
DPA [19] and RPA [7] attacks. We give a comparison of di�erent countermeasures against
RPA. Our countermeasure has a very low cost compared to the other countermeasures.

The rest of the paper is structured as follows. In Section 2, we describe some properties
on elliptic curves arithmetic and ECSM algorithms. In Section 3, we recall on the di�erent
side channel attacks, especially the RPA. Countermeasures against RPA are given. Section 4
describes our countermeasure based on modi�ed co-Z formulæ and an extension of the curve
isomorphism countermeasure. We give a comparison of di�erent countermeasures against the
RPA in Section 5. Finally, we conclude in Section 6.

2 Elliptic curve arithmetic

In this paper, we are interested in elliptic curves based on �eld with characteristic greater
than 3, and the given elliptic curves are in the reduced Weierstraÿ form.

However, our proposed countermeasure transforms the curve given into another one that
is not in its short Weierstraÿ form. This is why we also give the formulæ for elliptic curve
in the general Weierstraÿ form to understand our modi�ed formulæ of Section 4.

2.1 Elliptic curve arithmetic in the a�ne coordinates system

In a �nite �eld K, an elliptic curve can be described by its Weierstraÿ form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

We denote by E(K) the set of points (x, y) ∈ K2 satisfying the equation, plus the
point at in�nity O. E(K) has an Abelian group structure. Let P = (x1, y1) 6= O and
Q = (x2, y2) /∈ {O,−P} two points in E(K). The point R = (x3, y3) = P + Q can be
computed as:

x3 = λ2 + a1λ− a2 − x1 − x2
y3 = λ(x1 − x3)− y1 − a1x3 − a3

where λ =

{
y1−y2
x1−x2 if P 6= Q,
3x21+2a2x1+a4−a1y1

2y1+a1x1+a3
if P = Q.

The inverse of the point P is −P = (x1,−y1 − a1x1 − a3).

In a �nite �eld Fp, with p a prime such that p > 3, an elliptic curve can be described by
its short Weierstraÿ form:

E : y2 = x3 + ax+ b .

The point R = (x3, y3) = P +Q can be computed as:

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

where λ =

{
y1−y2
x1−x2 if P 6= Q,
3x21+a
2y1

if P = Q.

The inverse of the point P is −P = (x1,−y1).
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2.2 Elliptic curve arithmetic in the Jacobian projective coordinates system

To avoid costly inversions, one can use the Jacobian projective coordinates system. The
equation of an elliptic curve in the Jacobian projective coordinates system in the reduced
Weierstraÿ form is:

EJ : Y 2 = X3 + aXZ4 + bZ6 .

The point (X,Y, Z) corresponds to the a�ne point (X/Z2, Y/Z3).
We give addition (ecadd) and doubling (ecdbl) formulæ in the Jacobian projective

coordinates system. The formulæ are from [3].

Algorithm 1 ecdbl

Input: P = (X1, Y1, Z1) ∈ EJ (Fp)
Output: 2P

A← X2
1 ; B ← Y 2

1

C ← B2; D ← Z2
1

S ← 2((X1 +B)2 −A− C)
M ← 3A+ aD2

X3 ←M2 − 2S
Y3 ←M(S −X3)− 8C
Z3 ← (Y1 + Z1)2 −B −D

return (X3, Y3, Z3)

Algorithm 2 ecadd

Input: P = (X1, Y1, Z1), Q = (X2, Y2, Z2) ∈ EJ (Fp)
Output: P +Q
A← Z2

1 ; B ← Z2
2

U1 ← X1B; U2 ← X2A
S1 ← Y1Z2B; S2 ← Y2Z1A
H ← U2 − U1
I ← (2H)2

J ← HI; K ← 2(S2 − S1); V ← U1I
X3 ← K2 − J − 2V
Y3 ← K(V −X3)− 2S1J
Z3 ← ((Z1 + Z2)2 −A−B)H
return (X3, Y3, Z3)

We denote by M,S the cost of �eld multiplication and �eld squaring respectively. We
neglect the cost of additions and subtractions. ecdbl can be performed in 2M + 8S and
ecadd can be performed in 11M + 5S. Mixed addition (mecadd) is the addition of a
point in Jacobian coordinates with a point in a�ne coordinates (Z2 = 1). mecadd can be
performed in 7M + 4S [3].

2.3 Elliptic curve arithmetic using co-Z formulæ

We describe here addition formulæ with points sharing the same Z-coordinate. Two pro-
cedures are presented. Addition and update in co-Z (zaddu) is the procedure to compute
P + Q and update the point P to get the same Z-coordinate. It was introduced in [21].
Conjugate addition in co-Z (zaddc) is the procedure to compute P +Q and P −Q. It was
introduced in [8].

Algorithm 3 co-Z addition and update
(zaddu)

Input: P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ EJ (Fp)
Output: (R,S) with R = P + Q and S =

(λ2X1, λ
3Y1, λZ) with λ = X1 −X2

C ← (X1 −X2)2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)
D ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
X3 ← D −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)−A1

X4 ←W1

Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

Algorithm 4 conjugate co-Z addition
(zaddc)

Input: P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ EJ (Fp)
Output: (R,S) with R = P +Q, S = P −Q

C ← (X1 −X2)2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)
D1 ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
X3 ← D1 −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)−A1

D2 ← (Y1 + Y2)2

X4 ← D2 −W1 −W2

Y4 ← (Y1 + Y2)(W1 −X4)−A1

return ((X3, Y3, Z3), (X4, Y4, Z3))
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Goundar et al. proposed in [9] an optimisation by removing the useless computation of
the Z-coordinate. The formulæ are called the (X,Y )-only co-Z formulæ (zacau')4. zacau'
(algorithm 15 in appendix) is a procedure computing the point 2P and P + Q. It can be
performed in 8M + 6S [9].

2.4 Elliptic Curve Scalar Multiplication

In elliptic curve cryptography, one has to compute scalar multiplications, i.e. compute d ·P ,
given the point P and a positive integer d.

The Montgomery Ladder is regular since the same operations are performed at each
iteration independently of the current bit. Therefore it is secured against the SPA. The
Montgomery Ladder can be adapted with co-Z formulæ.

Algorithm 5 Montgomery Ladder

Input: P ∈ EJ (Fp), d = (dn−1, . . . , d0)2, dn−1 = 1
Output: d · P
R0 ← P,R1 ← 2P
for i = n− 2 downto 0 do

R1−di ← ecadd(R1−di , R1−di)
Rdi ← ecdbl(Rdi)

end for

return R0

Algorithm 6 add only Montgomery Ladder
using co-Z formulæ [8]

Input: P ∈ EJ (Fp), d = (dn−1, . . . , d0)2, dn−1 = 1
Output: d · P
R0 ← P,R1 ← 2P
for i = n− 2 downto 0 do

(R1−di , Rdi)← zaddc(Rdi , R1−di)
(Rdi , R1−di)← zaddu(R1−di , Rdi)

end for

return R0

Remark 1. In algorithm 6, the output point Rdi of zaddc is always equal to ±P . Indeed,
at the end of each iteration of the algorithm, R0 and R1 verify R1 = R0 + P .

Using zacau', zaddc' and zaddu', the add only Montgomery Ladder using co-Z for-
mulæ can be improved. See [9] for the justi�cation to recover the Z coordinate.

Algorithm 7 Montgomery Ladder with (X,Y )-only co-Z formulæ [9]

Input: P ∈ EJ (Fp), d = (dn−1, . . . , d0)2, dn−1 = 1
Output: d · P

R0 ← P,R1 ← 2P
C ← (XR0 −XR1)2

for i = n− 2 downto 1 do

(Rdi , R1−di , C)← zacau'(Rdi , R1−di , C)
end for

b← d0; (R1−b, Rb)← zaddc'(Rb, R1−b)
Z ← xPYRb(XR0 −XR1); λ← yPXRb

(Rb, R1−b)← zaddu'(R1−b, Rb)

return
((

λ
Z

)2
XR0 ,

(
λ
Z

)3
YR0

)

4 We use the same notation as in [9]: (') stands for formulæ that does not involve the Z-coordinate.
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3 Side Channel Attacks

We describe in this section passive attacks such as DPA, RPA and ZPA.

3.1 DPA attack and countermeasures

If the same scalar d is used several times, the implementation can be vulnerable to the
DPA [19]. The attacker recursively guesses the bits of the scalar and simulates the compu-
tation.

The countermeasures given below can be used to prevent the DPA.

Random Projective Coordinates [6]. A point P = (X,Y, Z) in Jacobian coordinates is
equivalent to any point (r2X, r3Y, rZ), with r ∈ F∗p. One can randomize the base point at
the beginning of the ECSM by choosing a random r.

Random curve isomorphism [15]. A curve E de�ned by E : y2 = x3 + ax+ b in a�ne
coordinates is isomorphic to the curve E′ de�ned by E′ : y2 = x3 + a′x + b′ if and only if
there exists u ∈ F∗p such that u4a′ = a and u6b′ = b. The isomorphism ϕ is de�ned as:

ϕ : E
∼−→ E′,

{
O → O

(x, y)→ (u−2x, u−3y)

The countermeasure consists of computing the ECSM on a random curve E′ instead of E.

Scalar Randomization [6]. Randomization of the scalar using d′ = d + r]E is e�ective
against DPA. r must be at least 32 bits, because attacks have been pointed out in [24] if r
is small. For this reason, the ECSM is 32 iterations longer.

Random Scalar Split [5]. Random scalar splitting, such as computing Q = d1 ·P +d2 ·P
with d = d1+d2, is e�ective against DPA. One can also use the euclidian splitting method [5]:
compute Q = d1 · P + d2 · S with d1 = d mod r, d2 = bd/rc and S = r · P with r a random
integer a half size of d. Ciet and Joye proposed in [5] to compute the point Q using a variant
of Shamir's trick for e�ciency (algorithm 13 in appendix). However, since they use four
temporary points, they cannot use the co-Z formulæ. ecdbl and mecadd should be used
instead. For the computation of S = r · P , one can also use the variant of Shamir's trick
with one of the scalar equals to zero.

Point Blinding [6]. Computing Q = d · (P +R) instead of d ·P , with R a pseudo-random
point is e�ective against DPA. The chip returns Q− dR. R and dR are computed from R0

and dR0 precomputed and stored in the chip, with R0 a random point.
This countermeasure was improved in [11] and later in [20]. The authors proposed to modify
the ECSM for gradually subtract the random point R. The Binary Expansion with Random
Initial Point (BRIP) can be found in appendix (algorithm 14). However, since they use three
temporary points, they cannot use the co-Z formulæ. ecdbl and mecadd should be used
instead.
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3.2 RPA attack

The RPA [7] is based on the apparition of a special point of the form (0, y) during the
ECSM5.

Let P0 = (0, y) for some y. Suppose that the Montgomery Ladder (algorihm 5) is used
to compute an ECSM. Suppose that the attacker already knows the n− i−1 leftmost bits of
the �xed scalar d = (dn−1, dn−2 . . . , di+1, di, di−1, . . . , d0)2. He tries to recover the unknown
bit di.

The attacker computes the point P = ((dn−1, dn−2, . . . , di+1, 0)
−1
2 mod ]E)P0 and gives

P to the targeted chip that computes d · P . If di = 0, then the point P0 will appear during
the ECSM. If the attacker is able to recognize a zero value in a register, he can then conclude
whether his hypothesis (di = 0) was correct or not.

3.3 ZPA attack

The Zero-Value Point Attack (ZPA) [1] uses the same approach than the RPA, except that
the attack is not only interested in zero values in coordinates but in intermediate registers
when computing the double of a point, or during the addition of two points. Such points
are de�ned as zero-value points.

Finding zero-value points for doubling formulæ consists in resolving polynomial equa-
tions in x, y with low degree (less than 4).

Finding zero-value points for addition is more di�cult. For the Montgomery Ladder
algorithm, suppose the attacker already knows the n− i− 1 leftmost bits of the �xed scalar
d = (dn−1, dn−2, . . . , d0)2 and try to recover di. With c = (dn−1, dn−2 . . . , di+1, 0)2, he has
to �nd a point P0 such that cP0 and (c + 1)P0 are zero-value points. The only known
procedure is using division polynomials and solve equations in two variables with degree
of order O(c2) [1]. At this day, when c is large, it is a hard problem.. This problem was
discussed in [12] and [1].

Remark 2. The random projective coordinates and the random curve isomorphism counter-
measures described in the previous subsection fail against RPA and ZPA.

Some countermeasures to prevent RPA and ZPA are given below.

Isogeny Defence [25,2]. Computing an ECSM on a curve E′ isogenous to E such that E′

does not contain any non-trivial zero-value point is e�ective against the RPA and the ZPA.

Randomized Linearly Transformed Coordinates (RLC) [11]. This countermeasure
consists in modifying the addition and doubling formulæ such that a zero value can never
show up. A point P = (X,Y, Z) is transformed into (Xµ, Y, Z, µ) with Xµ = X + µ, with
µ a random �eld element. The potential zero value X is never manipulated alone. The
countermeasure was given in [11] with classical doubling and addition formulæ. We adapted
the countermeasure with the co-Z formulæ, because it is more e�cient. We only modi�ed
the formulæ to prevent RPA because of the remark of the di�culty of the ZPA on addi-
tion formulæ. The countermeasure adapted with co-Z formulæ can be found in appendix
(algorithm 16).

5 the point (x, 0) can also be used but a point of this form is of order 2. In ECC, the order of the provided
base point is checked and points of order 2 never appear during an ECSM.
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Remark 3. The scalar randomisation, random scalar split and point blinding countermea-
sures described in the previous subsection are also e�ective against RPA and ZPA.

4 Our Proposed countermeasure

We describe in this section our new co-Z formulæ that we can use to perform a secured
ECSM against the DPA and the RPA.

The main idea is to perform the ECSM with a base point P ′ = (0, y′). This point and
its opposite −P ′ are the only points with a zero X-coordinate. Using the ECSM add only
Montgomery Ladder using co-Z formulæ (algorithm 6) with P ′ as the base point, we will
show that the inputs of zaddc are never ±P ′ whatever the value of the scalar. So the RPA
cannot be performed.

The output point Rdi of zaddc is always equal to ±P ′ (see remark 1). So ±P ′ = (0,±y′)
appears at the end of zaddc and therefore appears at the beginning of zaddu. Algorithms 3
and 4 can be modi�ed by removing the useless multiplications and additions with the zero-
value.

Algorithm 8 co-Z addition and update with
a zero value (zadduzero)

Input: P = (X1, Y1, Z), Q = (0, Y2, Z) ∈ EJ (Fp)
Output: (R,S) with R = P + Q and S =

(λ2X1, λ
3Y1, λZ) with λ = X1

C ← X2
1

W1 ← X1C; Z3 = ZX1

D ← (Y1 − Y2)2; A1 ← Y1W1

X3 ← D −W1

Y3 ← (Y1 − Y2)(W1 −X3)−A1

X4 ←W1; Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

Algorithm 9 conjugate co-Z addition with
a zero value (zaddczero)

Input: P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ EJ (Fp),
such that P −Q = (0, y)

Output: (R,S) with R = P +Q, S = P −Q

C ← (X1 −X2)2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)
D ← (Y1 − Y2)2; A1 = Y1(W1 −W2)
X3 ← D −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)−A1

Y4 ← (Y1 + Y2)W1 −A1

return ((X3, Y3, Z3), (0, Y4, Z3))

zadduzero and zaddczero can be combined without the Z-coordinate: zacauzero'. The
algorithm is given in appendix (algorithm 17). zacauzero' requires one multiplication and
one square less compared to zacau' (algorithm 15).

The main step is to �nd a method to transform any base point P = (x, y) of any curve
into a base point P ′ = (0, y′).

We present in this paper two methods of such a transformation. The �rst method uses
isogenies and was proposed in [2]. The second method is an extension of the random curve
isomorphism countermeasure.

4.1 Transformation of the base point using isogenies

An isogeny between two elliptic curves E and E′ de�ned over Fp is a non-constant morphism
φ : E → E′. Every isogeny has a �nite kernel and the size of this kernel is called the degree



8 J.-L. Danger et al.

of isogeny.

Brier and Joye introduced in [4] the use of isogenies for e�ciency: they transform an
elliptic curve E : y2 = x3+ax+b into an elliptic curve E′ : y2 = x3−3x+b′. The parameter
a′ = −3 brings better performance for doubling formulæ.

Smart proposed in [25] to use isogenies as a countermeasure against the RPA [7]. ECSMs
are performed on an isogenous elliptic curve that does not contain any special point of the
form (0, y). Akishita and Takagi extended the isogeny defense in [2] so it can also prevent
the ZPA. They also use isogenies for e�ciency for binary ECSM methods. The given elliptic
curve is transformed into an isogenous curve where the base point G′ has the particular form
G′ = (0, y′), for that the addition with the pointG′ is more e�cient because of the zero value.

Finding isogenies for a given elliptic curve is not trivial. Isogenies of standardized curves
are precomputed and stored in the chip. The base point given also needs to be mapped in
the isogenous curve. This transformation has a non negligible cost which is discussed in [25].

4.2 Transformation of the base point using isomorphism

We propose here a more practical method to transform the base point that can work to any
arbitrary curve. We extend the isomorphic curve countermeasure proposed in [15]. We need
the following corollary of the theorem [22, Theorem 2.2].

Corollary 1. Let Fp be a �nite �eld with a prime p > 3. The elliptic curves given by the

Weierstraÿ equations

E : y2 = x3 + a4x+ a6
E′ : y2 = x3 + a′2x

2 + a′4x+ a′6

are isomorphic over Fp if and only if there exist u ∈ F∗p and r ∈ Fp such that the change of

variables

(x, y)→ (u−2(x− r), u−3y)

transforms equation E into equation E′. Such a transformation is referred to as an admissible

change of variables. Furthermore,
u2a′2 = 3r
u4a′4 = a4 + 3r2

u6a′6 = a6 + ra4 + r3 .

Proof. The corollary is simply a particular case of the theorem [22, Theorem 2.2] with
s = t = a1 = a2 = a3 = a′1 = a′3 = 0.

ut
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Remark 4. In the isomorphic curve countermeasure [15], the isomorphic curve E′ is also in
its short short Weierstraÿ form for e�ciency reason. Therefore a′2 = 0. This implies r = 0.
Only u is randomly chosen for the countermeasure.

The ECSM add only Montgomery Ladder using co-Z formulæ (algorithm 6) has the
following properties:

� the base point P or its opposite −P appears at each iteration

� a point doubling is never performed in the main loop

The goal is to perform an ECSM with a base point of the form P ′ = (0, yP ′). If the base
point given is P = (xP , yP ) on the elliptic curve E, one can choose r = xP and a random u
so that the isomorphism:

ϕ : E
∼−→ E′,

{
O → O

(x, y)→ (u−2(x− r), u−3y)

maps the point P = (xP , yP ) into the point P ′ = (0, u−3yP ). However, the elliptic curve
E′ is not in the short Weierstraÿ form: the parameter a′2 is non-zero. Thanks to the add
only Montgomery Ladder using co-Z formulæ (algorithm 6), a doubling is never performed.
Only the addition has to be modi�ed. Using Section 2 to see the modi�cations due to the
non-zero a′2 parameter on co-Z formulæ, we can give the modi�ed co-Z formulæ.

Algorithm 10 co-Z addition and up-
date with a zero value and a′2 parameter
(zadduazero)

Input: P = (X1, Y1, Z), Q = (0, Y2, Z) ∈ E′J (Fp)
and Ta = a′2Z

2

Output: (R,S, Ta) with R = P + Q, S =
(λ2X1, λ

3Y1, λZ) with λ = X1 and Ta = a′2Z
2
3

C ← X2
1

W1 ← X1C; Z3 ← ZX1; Ta ← TaC
D ← (Y1 − Y2)2; A1 ← Y1W1

X3 ← D −W1 − Ta
Y3 ← (Y1 − Y2)(W1 −X3)−A1

X4 ←W1; Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3), Ta)

Algorithm 11 conjugate co-Z addition with
a zero value and a′2 parameter (zaddcazero)

Input: P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ E′J (Fp),
such that P −Q = (0, y) and Ta = a′2Z

2

Output: (R,S, Ta) with R = P +Q, S = P −Q and
Ta = a′2Z

2
3

C ← (X1 −X2)2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)
Ta ← TaC
D ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
X3 ← D −W1 −W2 − Ta
Y3 ← (Y1 − Y2)(W1 −X3)−A1

Y4 ← (Y1 + Y2)W1 −A1

return ((X3, Y3, Z3), (0, Y4, Z3), Ta)

The combination of the two formulæ without the Z-coordinate is given in appendix
(algorithm 18). We called it zacauazero'. zacauazero' requires 9M + 5S. That is one
multiplication more and one square less than zacau'.

The complete ECSM using the countermeasure and the modi�ed co-Z formulæ is given
below.
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Algorithm 12 (X,Y )-only add only Montgomery Ladder using modi�ed co-Z formulæ

Input: P ∈ EJ (Fp), d = (dn−1, . . . , d0)2, dn−1 = 1
Output: d · P

u
R← F∗p

P ′ ← (0, u−3yP , 1) . isomorphism
Ta ← 3xPu

−2 . Ta is the a′2 of the isomorphic curve E′

R0 ← P ′, R1 ← 2P ′ . R0 and R1 must share the same Z-coordinate
C ← (XR0 −XR1)2 = X2

R1

for i = n− 2 downto 1 do

(Rdi , R1−di , C, Ta)← zacauazero'(Rdi , R1−di , C, Ta)
end for

b← d0; (R1−b, Rb, Ta)← zaddcazero'(Rb, R1−b, Ta)
Z ← 3xPu

−2YRb(XR0 −XR1); λ← yPTa . Z = a′2YRb(XR0 −XR1), λ = yP a
′
2Z

2
R0

(Rb, R1−b, Ta)← zadduazero'(R1−b, Rb, Ta)

(x′, y′)←
((

λ
Z

)2
XR0 ,

(
λ
Z

)3
YR0

)
(x, y)← (u2x′ + xP , u

3y) . isomorphism inverse

return (x, y)

4.3 Security Analysis of our countermeasure

The security against RPA is based on the fact that the base point P ′ has a x-zero coordinate.
The only possible points having a x-zero coordinate are P ′ and −P ′. These two points can
never appear as inputs of zacauazero'. Joye was the �rst to propose in [13] an extension
of the random curve isomorphism countermeasure to prevent the RPA. His countermeasure
can be applied for elliptic curves on binary �elds of the form y2 + xy = x3 + a2x

2 + a6,
so choosing a random r for the isomorphism of theorem [22, Theorem 2.2] does not a�ect
the e�ciency. In this paper, we introduced the extension of the random isomorphic curve
countermeasure on elliptic curve over �eld of large characteristic without any e�ciency loss.

SPA security. Our ECSM is regular: the same operation zacauazero' is performed what-
ever the value of the current bit. The classical SPA where an attacker is able to distinguish
di�erent patterns depending on the value of the current bit cannot be applied.

DPA security. The random parameter u gives the security against DPA. All values and
intermediates values in zacauazero' (algorithm 18) are multiplicatively randomized by u.

RPA security. The RPA security is provided by the following lemma.

Lemma 1. Suppose d satis�es 1 < d < ord(P ). The points R0 and R1 at the beginning of

each iteration 1 ≤ i ≤ n− 3 in algorithm 12 cannot take the values ±P ′.

Proof. Suppose the ECSM is performed with the scalar d = (dn−1, dn−2, . . . , d0)2 and the
base point P ′. Let ci = (dn−1, dn−2 . . . , di+1)2. At the beginning of iteration i with 1 ≤ i ≤
n− 3, the points R0, R1 verify R0 = ciP

′ and R1 = (ci + 1)P ′.

� if R0 = ciP
′ = P ′, then (ci − 1)P ′ = O so the order of P ′ and P is (ci − 1), which is

impossible by the condition of d.



Low-Cost Countermeasure against RPA 11

� if R0 = ciP
′ = −P ′, then (ci + 1)P ′ = O so the order of P ′ and P is (ci + 1), which is

impossible by the condition of d.
� if R1 = (ci+1)P ′ = P ′, then ciP

′ = O so the order of P ′ and P is ci, which is impossible
by the condition of d.

� if R1 = (ci+1)P ′ = −P ′, then (ci+2)P ′ = O so the order of P ′ and P is (ci+2), which
is impossible by the condition of d.

By contradiction, we prove that the points R0, R1 cannot take the values P
′ or −P ′. ut

An elliptic curve E′ : y2 = x3+a′2x
2+a′4x+a

′
6 contains at most two points of the form (0, y′).

Those points are P ′ = (0,
√
a′6) and −P ′ = (0,−

√
a′6). The points P

′ and −P ′ are the only
points with a zero x-coordinate. With the lemma, we can state that an attacker is not able to
perform a RPA attack because the zero-value points never appear in outputs of zacauazero'.

ZPA security. The ZPA security is not guaranteed. However, the ZPA remains di�cult
because no doubling is performed during the ECSM. The attacker has to �nd zero-value
points for addition which is a di�cult problem [12,1]. This is discussed in Section 3.

5 Comparison with prior RPA countermeasures

In this section, we compare di�erent countermeasures against RPA described in Section 3.

ECSM Countermeasure Cost per bit Cost of ECSM works to any curve

(X,Y )-only co-Z none (reference) 8M + 6S n(8M + 6S) X
Montgomery Ladder [9]

(X,Y )-only co-Z d′ = d+ r]E 8M + 6S (n+ 32)(8M + 6S) X
Montgomery Ladder [6]

Regular Shamir's random scalar split 8M + 12S n(8M + 12S) X
trick [5]

(X,Y )-only co-Z isogeny defense ×
Montgomery Ladder [25,2] 8M + 6S n(8M + 6S) (isogenous curves

precomputed)

BRIP BRIP ×
algorithm 14 [20] 8M + 12S n(8M + 12S) (initial random

point precomputed)

(X,Y )-only co-Z Random Linear
Montgomery Ladder Coordinates 10M + 6S n(10M + 6S) X

with RLC [11]

(X,Y )-only co-Z
Montgomery Ladder this paper 9M + 5S n(9M + 5S) X
with zacauazero'

We can see that if the cost of a multiplication and a square is the same, our countermea-
sure does not bring any additional cost. The isogeny defence does not bring any additional
cost as well but it does not work to any curve: the isogenous curves have to be precomputed
and stored in the chip. Moreover, the base point given has to be mapped to the isogenous
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curve, so the countermeasure has an extra cost. The cost of isogeny is approximatively 3l
multiplications with l the degree of isogeny [25].

6 Conclusion

We presented in this paper a secured ECSM where the base point is of the form P ′ = (0, y′).
The base point P given is transformed into P ′ using an extension of the isomorphic curve
countermeasure [15]. The ECSM is secured against DPA [19] and RPA [7]. Moreover, thanks
to co-Z formulæ, a doubling is never performed during the main loop, so the ZPA [1] remains
a hard problem. A comparison of di�erent countermeasure against RPA is also given. Using
modi�ed co-Z formulæ, the loss of e�ciency is negligible, and our countermeasure is the
most e�cient.

Further work is to guarantee the security against the ZPA with either �nding formulæ
with no zero-value point or calculating the cost of �nding zero-value points for addition.
Also, a comparison of the memory cost of countermeasures against RPA is missing.
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A Elliptic Curve Scalar Multiplication Algorithms

Algorithm 13 Variant of Shamir's trick [5]

Input: P, S ∈ EJ (Fp), k = (kn−1, . . . , k0)2,
d = (dn−1, . . . , d0)2 with (kn−1, dn−1) 6= (0, 0)

Output: k · P + d · S
R1 ← P ; R2 ← S; R3 ← P + S; R4 ← P + S
c← 2dn−1 + kn−1; R0 ← Rc
for i = n− 2 downto 0 do

R0 ← ecdbl(R0)
b← ¬(ki ∨ di); c← 2di + ki
R4b ← mecadd(R4b, Rc)

end for

return R0

Algorithm 14 BRIP [20]

Input: d = (dn−1, . . . , d0)2, P
Output: d · P

R← randompoint()
R0 ← R, R1 ← −R,R0 = P −R
for i = n− 1 downto 0 do

R0 ← ecdbl(R0)
R0 ← mecadd(R0, Rdi+1)

end for

return R0 +R1

B co-Z formulæ

Algorithm 15 (X,Y )-only co-Z conjugate-addition-addition with update (zacau') [9]

Input: (X1, Y1), (X2, Y2), C with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ EJ (Fp) and C = (X1 −X2)2

Output: (X3, Y3), (X4, Y4), C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q and
C = (X3 −X4)2

W1 ← X1C; W2 ← X2C
D1 ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
X ′1 ← D1 −W1 −W2; Y ′1 ← (Y1 − Y2)(W1 −X ′1)−A1

D2 ← (Y1 + Y2)2

X ′2 ← D2 −W1 −W2; Y ′2 ← (Y1 + Y2)(W1 −X ′2)−A1

C′ ← (X ′1 −X ′2)2

X4 ← X ′1C
′; W ′2 ← X ′2C

′

D′ ← (Y ′1 − Y ′2 )2; Y4 ← Y ′1 (X4 −W ′2)
X3 ← D′ −X4 −W ′2
C ← (X3 −X4)2

Y3 ← (Y ′1 − Y ′2 +X4 −X3)2 −D′ − C − 2Y4

X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4

Y4 ← 8Y4; C ← 16C
return (X3, Y3), (X4, Y4), C
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Algorithm 16 (X,Y )-only co-Z conjugate-addition-addition with update using RLC

Input: (X1,µ, Y1), (X2,µ, Y2), C, µ with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ EJ (Fp)
with X1,µ = X1 + µ,X2,µ = X2 + µ and C = (X1 −X2)2

Output: (X3,µ, Y3), (X4,µ, Y4), C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q
with X3,µ = X3 + µ,X4,µ = X4 + µ and C = (X3 −X4)2

W1 ← X1,µC; W2 ← X2,µC
Cµ = µC
D ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
X ′1,µ ← D −W1 −W2 + 2Cµ + µ; Y ′1 ← (Y1 − Y2)(W1 −X ′1,µ + µ− 2Cµ)−A1

D̄ ← (Y1 + Y2)2

X ′2,µ ← D̄ −W1 −W2 + 2Cµ + µ; Y ′2 ← (Y1 + Y2)(W1 −X ′2,µ + µ− 2Cµ)−A1

C′ ← (X ′1,µ −X ′2,µ)2

C′µ = µC′

X4,µ ← X ′1,µC
′; W ′2 ← X ′2,µC

′

D′ ← (Y ′1 − Y ′2 )2; Y4 ← Y ′1 (X4,µ −W ′2 + µ− 2C′µ)
X3,µ ← D′ −X4,µ −W ′2 + 2C′µ + µ
X4,µ ← X4,µ − C′µ + µ
C ← (X3,µ −X4,µ)2

Y3 ← (Y ′1 − Y ′2 +X4,µ −X3,µ)2 −D′ − C − 2Y4

X3,µ ← 4X3,µ − 3µ; Y3 ← 4Y3; X4,µ ← 4X4,µ − 3µ
Y4 ← 8Y4; C ← 16C
return (X3,µ, Y3), (X4,µ, Y4), C

Algorithm 17 (X,Y )-only co-Z conjugate-addition-addition with a zero value
(zacauzero')

Input: (X1, Y1), (X2, Y2), C with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ E′J (Fp) such thatQ−P = P ′ = (0, y′)
and C = (X1 −X2)2

Output: (X3, Y3), (X4, Y4), C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q and
C = (X3 −X4)2

W1 ← X1C; W2 ← X2C
D ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
X ′1 ← D −W1 −W2; Y ′1 ← (Y1 − Y2)(W1 −X ′1)−A1

Y ′2 ← (Y1 + Y2)W1 −A1

C′ ← (X ′1 −X ′2)2

X4 ← X ′1C
′

D′ ← (Y ′1 − Y ′2 )2; Y4 ← Y ′1X4

X3 ← D′ −X4

C ← (X3 −X4)2

Y3 ← (Y ′1 − Y ′2 +X4 −X3)2 −D′ − C − 2Y4

X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4

Y4 ← 8Y4; C ← 16C
return (X3, Y3), (X4, Y4), C
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Algorithm 18 (X,Y )-only co-Z conjugate-add-add with a zero value and a′2 (zacauazero')

Input: X1, Y1, X2, Ta, C with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ E′J (Fp) such that Q− P = P ′ = (0, y′),
Ta = a′2Z

2 and C = (X1 −X2)2

Output: (X3, Y3), (X4, Y4), Ta, C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q,
Ta = a′2Z

2
3 and C = (X3 −X4)2

W1 ← X1C; W2 ← X2C; Ta ← TaC
D ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
X ′1 ← D −W1 −W2 − Ta
Y ′1 ← (Y1 − Y2)(W1 −X ′1)−A1; Y ′2 ← (Y1 + Y2)W1 −A1

C′ ← (X ′1 −X ′2)2

X4 ← X ′1C
′; Ta ← TaC

′

D′ ← (Y ′1 − Y ′2 )2; Y4 ← Y ′1X4

X3 ← D′ −X4 − Ta
C ← (X3 −X4)2

Y3 ← (Y ′1 − Y ′2 +X4 −X3)2 −D − C − 2Y4

X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4; Ta ← 4Ta; Y4 ← 8Y4; C ← 16C
return (X3, Y3), (X4, Y4), Ta, C

Algorithm 19 (X,Y )-only co-Z conjugate-add-add with a zero value and a′2 (zacauazero')
(register allocation)

Input: (X1, Y1), (X2, Y2), Ta, C with P = (X1, Y1, Z), Q = (X2, Y2, Z) such that Q − P = P ′ = (0, y′),
Ta = a′2Z

2 and C = (X1 −X2)2

Output: (X3, Y3), (X4, Y4), Ta, C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q,
Ta = a′2Z

2
3 and C = (X3 −X4)2

T1 ← X1, T2 ← Y1, T3 ← C, T4 ← X2, T5 ← Y2

1: Ta ← Ta × T3 {a′2Z
2
P+Q}

2: T6 ← T3 × T4 {W2}
3: T3 ← T3 × T1 {W1}
4: T1 ← T2 − T5 {Y1 − Y2}
5: T1 ← T 2

1 {D}
6: T1 ← T1 − Ta {D − a′2Z′2}
7: T1 ← T1 − T3 {D − a′2Z′2 −W1}
8: T1 ← T1 − T6 {X ′1}
9: T6 ← T6 − T3 {W2 −W1}
10: T6 ← T6 × T2 {−A1}
11: T2 ← T2 − T5 {Y1 − Y2}
12: T5 ← 2T5 {2Y2}
13: T5 ← T5 + T2 {Y1 + Y2}
14: T5 ← T5 × T3 {Y ′2 +A1}
15: T5 ← T5 + T6 {Y ′2}
16: T3 ← T3 − T1 {W1 −X ′1}
17: T2 ← T2 × T3 {Y ′1 +A1}
18: T2 ← T2 + T6 {Y ′1}
19: T3 ← T 2

1 {C′}
20: Ta ← Ta × T3 {a′2Z

2
R}

21: T4 ← T1 × T3 {X4}
22: T3 ← T2 − T5 {Y ′1 − Y ′2}
23: T5 ← T2 × T4 {Y4}
24: T2 ← T 2

3 {D′}
25: T1 ← T2 − Ta {D′ − a′2Z′2}
26: T1 ← T1 − T4 {X3}
27: T6 ← T1 − T4 {X3 −X4}
28: T3 ← T3 − T6 {Y ′1 − Y ′2 +X4 −X3}
29: T3 ← T 2

3 {(Y ′1 − Y ′2 +X4 −X3)2}
30: T2 ← T3 − T2 {(Y ′1 − Y ′2 +X4 −X3)2 −D′}
31: T3 ← T 2

6 {C}
32: T2 ← T2−T3 {(Y ′1 −Y ′2 +X4−X3)2−D′−C}
33: T5 ← 2T5 {2Y4}
34: T2 ← T2 − T5 {Y3}
35: T1 ← 4T1 {4X3}
36: T2 ← 4T2 {4Y3}
37: T3 ← 16T3 {16C}
38: T4 ← 4T4 {4X4}
39: T5 ← 4T5 {8Y3}
40: Ta ← 4Ta {4a′2Z

2
3}

return ((T1, T2), (T4, T5), Ta, T3)


