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Abstract. At CHES 2011 Goubin and Martinelli described a new coun-
termeasure against side-channel analysis for AES based on Shamir’s
secret-sharing scheme. In the present paper, we exhibit a flaw in this
scheme and we show that it is always theoretically broken by a first-
order side-channel analysis. As a consequence of this attack, only a slight
adaptation of the scheme proposed by Ben-Or et al. at STOC in 1988
can securely process multiplications on data shared with Shamir’s tech-
nique. In the second part of this paper, we propose an improvement of
this scheme that leads to a complexity Õ(d2) instead of O(d3), where d
is the number of shares per data.

1 Introduction

The observation of a device during its execution (e.g. through power
consumption measurements) can give information on the internal val-
ues actually manipulated by the device. Based on this idea, a power-
ful attack targeting symmetric cipher implementations called Differential
Power Analysis (DPA for short) has been proposed by Kocher et al. in
1998 [14]. The main idea is to observe the device during the manipula-
tion of key-dependent data (called sensitive data in the sequel), and to
retrieve information about the key (and eventually the whole key) from
this observation.

Since the introduction of DPA, and more generally of Side Channel
Analysis (SCA for short), many works have focused either on the enhance-
ment of such attacks or on the search of sound countermeasures. In the
latter area of research, masking techniques are currently the most promis-
ing type of countermeasure. The idea is to split any sensitive variable
manipulated by the device into several shares such that the knowledge of
a subpart of the shares does not give information on the sensitive value
itself. When the number of shares is d + 1, the countermeasure is usually
called a dth-order masking scheme. In this case the attacker has to retrieve



information about the d+1 shares — i.e. to observe at least d+1 leakage
points on the device — in order to gain knowledge about the targeted sen-
sitive variable. Such an attack is called a (d + 1)th-order SCA attack and
it has been shown that its complexity increases exponentially with the
order d [4]. While some 1st-order masking techniques have been proved
to be secure against 1st-order SCA attacks (see for instance [2,16]), the
practicality of 2nd-order attacks has been also demonstrated [15,17,27].
The construction of an efficient dth-order masking scheme thus became of
great interest. The main difficulty resides in the handling of d + 1 shares
of a unique intermediate variable through a non-linear function (i.e. the
cipher s-boxes and more precisely the internal multiplications that are
not squarings). We call this issue the higher-order masking problem.

State of the Art. The first scheme successfully dealing with the masking
problem for any order d has been specified by Ishai, Sahai and Wagner
in [12] for hardware implementations (where every internal operation is
done over F2). In [21], this seminal result has been generalized from F2 to
any finite field in the case of AES. It has subsequently been generalized
to any block cipher in [3]. In parallel, Kim, Hong and Lim presented in
[13] an improvement of [21]’s scheme which reduces, in the case of AES,
the constant terms of the complexity for small orders d; it is based on
the tower-field approach from [23]. The complexity of all those methods
is O(d2) where d is the masking order.

A common property of those previously cited works is that a Boolean
masking is used to split the sensitive data. Namely, every sensitive vari-
able A is assumed to be represented under the form of a (d + 1)-tuple
(A0, A1, · · · , Ad) such that A = A0⊕A1⊕· · ·⊕Ad. However, other mask-
ing techniques have recently been investigated. On the one hand, Genelle,
Prouff and Quisquater proposed in [9] a higher-order scheme based on the
alternate use of Boolean masking and a multiplicative masking where the
shares satisfy A0 · A1 · · · · · Ad = A. Its complexity is still O(d2) but the
constant terms are significantly reduced in the case study of AES. On
the other hand, Goubin and Martinelli [11] and Prouff and Roche [20,22]
have proposed to use Shamir’s secret-sharing scheme to split the sensitive
data. Starting from the same core observation as previous works [6,8],
the authors’ goal was to use a sharing technique with complex algebraic
structure, in order to reduce the amount of sensitive information pro-
vided by the observation of the shares when involved e.g. in a correlation
SCA. Additionally, the authors of [20,22] have shown that this way of
sharing data enables the construction of masking schemes which thwart



higher-order side-channel attacks in the presence of hardware glitches.
The security argumentation is essentially based on a link which is estab-
lished between the problematic of securing s-box processings against SCA
in the presence of glitches and the Multi-Party Computation problematic.
In both [11] and [20,22] the practical security gain is achieved at the cost
of a complexity overhead which is O(d3) instead of O(d2) (for Boolean
masking).

Our Contribution. In this paper, we first show that the secure mul-
tiplication scheme published in [11] is flawed and that a first-order SCA
can always be successfully performed against it. Then, we show that the
single remaining scheme to process secure multiplications between vari-
ables shared with Shamir’s technique (namely the adaptation of [1] in
the SCA context), can be improved to have complexity Õ(d2) instead of
O(d3). This is essentially done by computing polynomial evaluations with
a DFT instead of a naive evaluation.

2 Goubin and Martinelli’s Schemes

2.1 Preliminaries

In this paper, random variables will be denoted by capital letters (e.g.
A) and they take their values (realisations) in GF (2`). Realisations of a
random variable will be denoted in small-case letters (e.g. a). Throughout
this paper, we will make the (common) assumption that the side-channel
leakage emanating from the manipulation of a variable can be rightfully
modelled by a deterministic function of this variable and the addition of
an independent Gaussian noise. Under this assumption, an implementa-
tion is said to be secure against dth-order SCA attacks if it satisfies the
following property [5,11,20,21,24].

Definition 1 (dth-order SCA security). The implementation of an
algorithm achieves dth-order SCA security if no family of at most d in-
termediate variables is dependent on a sensitive variable.

If a family of j ≤ d intermediate variables depends on a sensitive variable,
then the implementation is said to have a jth-order flaw.

Sharing/Masking. To achieve dth-order security, a common countermea-
sure is to specify the implementation such that every sensitive variable
is manipulated in a (d + 1)th-order sharing form. A classical choice is the
Boolean masking, but other alternatives exist [9,11,20].



Masking Schemes. When the concept of (d + 1)th-order sharing is in-
volved to protect an algorithm implementation, so-called dth-order mask-
ing schemes are specified for each elementary operation (e.g. affine trans-
formations or field multiplications). They aim at specifying how to build
the sharing of the operation output from the sharing of the input(s), with-
out introducing any jth-order flaw with j ≤ d.

In this paper we focus on a particular higher-order sharing based on
Shamir’s secret sharing [25]. For this technique, two families of masking
schemes have been proposed in [11] and [20,22] respectively. We recall
some of them along with the outlines of the sharing process itself in the
next section.

2.2 Shamir’s Secret Sharing Scheme

In a seminal paper [25], Shamir has introduced a simple and elegant way
to split a secret A ∈ GF (2`) into n shares such that no tuple of shares with
cardinality lower than a so-called threshold d < n depends on A. Shamir’s
protocol consists in generating a degree-d polynomial with coefficients
randomly generated in GF (2`), except the constant term which is always
fixed to A. In other terms, Shamir proposes to associate A with a polyno-
mial PA(X) defined such that PA(X) = A +

∑d
i=1 uiX

i, where the ui de-
note random coefficients. Then, n distinct non-zero elements α0, . . . , αn−1

are publicly chosen in GF (2`) and the polynomial PA(X) is evaluated in
the αi to construct a so-called (n, d)-sharing (A0, A1, · · · , An−1) of A such
that Ai = PA(αi) for every i ∈ [0;n− 1].

To re-construct A from its sharing, polynomial interpolation is first
applied to re-construct PA(X) from its n evaluations Ai. Then, the poly-
nomial is evaluated in 0. Those two steps indeed leads to the recovery of A
since, by construction, we have A = PA(0). Actually, using Lagrange’s in-
terpolation formula, the two steps can be combined in a single one thanks
to the following equation:

A =
n−1∑
i=0

Ai · βi , (1)

where the constants βi are defined as follows:

βi :=
n−1∏

k=0,k 6=i

αk

αi + αk
.



Remark 1. The βi can be precomputed once for all and will hence be
considered as public values in the following.

Notation. The value βi will sometimes be considered as the evaluation in
0 of the polynomial:

βi(x) :=
n−1∏

k=0,k 6=i

x + αk

αi + αk
.

2.3 Multiplication of Shares

To define a dth-order masking scheme for a block cipher implementation
where each intermediate result is split with Shamir’s technique, one must
specify a secure method for the processing of field multiplications over
GF (2`). Recently, two papers have been published on this issue respec-
tively by Goubin and Martinelli [11] and by Prouff and Roche [20]. Both
of them start from a multiplication protocol introduced by Ben-Or et
al. in the context of the Multy-Party Computation Theory [1]. For this
protocol to work, the number of shares n per variable must be at least
2d+1 and for n = 2d+1, it is proved that it satisfies a security property
encompassing the dth-order SCA security. Whereas [20] is a straightfor-
ward rewriting of Ben-Or et al. (BGW) protocol for the SCA context,
the scheme in [11] may be viewed as an efficiency improvement attempt
in the SCA context. It is called GM protocol in the following. We recall
hereafter the two solutions.

2.4 BGW Protocol in the SCA Context

Let us assume that A and B are two variables in GF (2`) that have been
(n, d)-shared into (Ai)i and (Bi)i respectively, by evaluating the secret
polynomials PA(X) = A+

∑
1≤j≤d ujX

j and PB(X) = B +
∑

1≤j≤d vjX
j

in the public points αi for 1 ≤ i ≤ n. We give hereafter the adaptation of
[1] in the SCA context as proposed in [20,22]1.

1 The protocol is an improved version of the protocol originally proposed by Ben-Or
et al. [1], due to Gennaro et al. in [10].



Algorithm 1 BGW’s Secure Multiplication
Input: two integers n and d such that n ≥ 2d+1, the (n, d)-sharings (Ai)i = (PA(αi))i

and (Bi)i = (PB(αi))i of A and B respectively.
Output: the (n, d)-sharing (PC(αi))i of C = A ·B.
Public: the n distinct points αi, the interpolation values (β0, · · · , βn−1)

1. for i = 1 to n

2. do Wi ← PA(αi) · PB(αi)

*** Compute a sharing (Qi(αj))j≤d of Wi with Qi(X) = Wi +
Pd

j=1 aj ·Xj

3. for j = 1 to d do aj ← rand(GF (2`))

4. for j = 1 to n do Qi(αj)←Wi +
Pd

k=1 ak · αk
j

*** Compute the share Ci = PC(αi) for C = A ·B
5. for i = 1 to n

6. do Ci ←
Pn

j=1 Qj(αi) · βj .

7. return (Ci)i

The completeness of Algorithm 1 is discussed in [1]. Its dth-order SCA
security can be straightforwardly deduced from the proof given by Ben-
Or et al. in [1] in the secure multi-party computation context. Eventually,
for n = 2d + 1 (which is the parameter choice which optimizes the se-
curity/efficiency overhead), the complexity of Algorithm 1 in terms of
additions and multiplications is O(d3).

2.5 GM Multiplication Protocol

The scheme proposed in [11] has the same asymptotic complexity as BGW
but with much smaller constant terms. Indeed, the functional condition
n ≥ 2d + 1 is replaced by the minimal one n ≥ d + 1 which enables to
process the multiplication on (d + 1, d)-sharings of A and B (instead of
(2d + 1, d)-sharings). We recall hereafter the proposal in [11] with the
notations βj,k(X) standing for the polynomials βj(X) · βk(X) truncated
by removing the terms of degree strictly greater than d.

Algorithm 2 Goubin and Martinelli’s Secure Multiplication
Input: the (d + 1, d)-sharings (Ai)i and (Bi)i of A and B respectively.
Output: the (d + 1, d)-sharing (Ci)i of C = A ·B.
Public: the public elements αi and the public polynomials βj,k(X).

1. for j = 0 to d

2. for k = 0 to d

3. do tj,k ← Aj ·Bk

4. for i = 0 to d



5. do Ci ←
dP

j=1

j−1P
k=0

(tj,k + tk,j) · βj,k(αi) +
dP

j=0

tj,j · βj,j(αi)

6. return (Ci)i

The completeness of Algorithm 2 is argued in [11]. Here, we only point
out that the fifth step may be rewritten:

Ci =
d∑

j=0

d∑
k=0

tj,k · βj,k(αi) =
d∑

j=0

d∑
k=0

Aj ·Bk · βj,k(αi) , (2)

in which the evaluation in αi of the degree-d part of the polynomial
PC(X) = PA(X) · PB(X) can be clearly recognized. Hence, (2) can be
written:

Ci = (PA(X) · PB(X))|d (αi) , (3)

where the notation (·)|d stands for the polynomial truncation obtained by
suppressing all the monomials of degree strictly greater than d.

In [11], the authors assume that Algorithm 2 satisfies dth-order SCA
security and let the proof for future work. In the next section, we in-
validates this assumption by exhibiting a first-order flaw which occurs
whatever the input order d of the algorithm.

3 Attack against GM Protocol

Hereafter we show that Goubin and Martinelli’s Algorithm 2 always has
a first-order flaw whatever the masking order d. For clarity reasons, we
first exhibit the flaw for d = 1 and generalize it afterward. We moreover
give, in Annex A, an information theoretic evaluation of this first-order
leakage for d = 1 and d = 2.

Attack Description for d = 1. In this case, (3) becomes:

Ci = A ·B + A · V · αi + B · U · αi , (4)

where we denoted by U and V the random variables associated to the
coefficients of the non-constant monomials in PA and PB respectively.
By construction, those coefficients have been randomly generated and we
hence assume that both U and V have a uniform distribution.

When A = B = 0, it can be checked that Ci is always null. Otherwise,
if (A,B) 6= (0, 0), say A 6= 0 w.l.o.g., then the term A · V · αi is not null



(since αi 6= 0 by construction) and it depends neither on B ·U ·αi nor on
A ·B. As a consequence, Ci always follows an uniform distribution when
(A,B) 6= (0, 0). We hence deduce that Ci leaks information on (A,B)
(whether it is null or not) and hence that the first-order countermeasure
has a flaw.

More generally, we state in the following proposition that such first-
order flaw exists for any masking order d.

Proposition 1. Algorithm 2 always has a first-order flaw for any input
parameter d.

Proof. The flaw in Algorithm 2 has already been exhibited for d = 1. In
the rest of the proof, we hence assume d > 1 and we show that, even in
this case, a flaw can be exhibited. By developing (3) we get:

Ci = A ·B +
d∑

j=1

A · Vj · αj
i +

d∑
j=1

B ·Uj · αj
i +

d−1∑
j=1

d−j∑
k=1

Uj · Vk · αj+k
i , (5)

where we denoted by Uj and Vk the random variables associated to the
coefficients of the non-constant monomials in PA and PB respectively.
Thanks to the law of total probability, for every (a, b) ∈ GF (2`)2 the
probability Pr[Ci|A = a,B = b] satisfies:

Pr[Ci|A = a,B = b] = 2−`d
∑

u∈GF (2`)d

Pr[Ci(a, b, u)] , (6)

where Ci(a, b, u) denotes (Ci | A = a,B = b, U = u) and U refers to
(U1, · · · , Ud).

Let us focus on Ci(a, b, u). By definition, it satisfies:

Ci(a, b, u) = a·b+
d∑

j=1

b·uj ·αj
i +a·αd

i ·Vd+
d−1∑
j=1

Vj ·αj
i ·(a+

d−j∑
k=1

uk ·αk
i ) . (7)

It can hence be viewed as an affine combination of random variables Vj

that all have uniform distribution and are mutually independent (by con-
struction of the polynomial PA). This linear combination always contains
the term αd

i · a · Vd which is independent of the other ones and has an
uniform distribution as long as a is non-zero (since αd

i itself is non-zero).
Based on this observation, we can split our analysis into two cases related
to the condition a = 0.



If a 6= 0, then Ci(a, b, u) has uniform distribution for every b and every
u. This implies that Pr[Ci|A = a,B = b] is an uniform distribution.

If a = 0, then a sufficient condition for Ci(a, b, u) to be uniform is
that at least one of the terms

∑d−j
k=1 uk · αk

i is non-zero when j ranges
from 1 to d− 1 which is equivalent with (u1, · · · , ud−1) 6= (0, · · · , 0) since
the αj

i are all non-zero (by construction). When this sufficient condition
is not satisfied, i.e. when (u1, · · · , ud−1) = (0, · · · , 0), then we have:

Pr[Ci|A = 0, B = b, u1 = 0, · · · , ud−1 = 0] = Pr[b · αd
i · Ud] .

We deduce that, if b 6= 0, then Pr[Ci|A = 0, B = b, (u1, · · · , ud−1) 6=
(0, · · · , 0)] and Pr[Ci|A = 0, B = b, (u1, · · · , ud−1) = (0, · · · , 0)] are
both uniform, which implies (due to the law of total probability2) that
Pr[Ci|A = 0, B = b] is uniform. On the other hand, if b = 0, then the
variable (Ci|A = 0, B = b, u1 = 0, · · · , ud−1 = 0) is constant and its dis-
tribution is the function which is zero everywhere except in 0 where it
takes the value 1. Eventually for (a, b) = (0, 0) we get:

Pr[Ci = c|A = a,B = b] =

{
1
2` − 1

2`d if c 6= 0
1
2` + 2`−1

2`d if c = 0
,

which implies that the distribution Pr[Ci|A = 0, B = 0] is non-uniform.
This concludes the proof since it shows that the distribution of Ci depends
on the value of the pair of sensitive variables A and B. �

Remark 2. It can be observed that the distance between the two distribu-
tions that can take Ci decreases as the order increases and they actually
merge when the order tends to infinity.

4 Improvement Proposal

In this section we describe a simple improvement of Algorithm 1 so that
the complexity of the secure multiplication algorithm becomes Õ(d2) in-
stead of O(d3). In Algorithm 1, the O(d3) complexity comes from Step
4; namely this corresponds to the evaluation of a polynomial of degree d
at n points αi, which takes O(n · d) times; since Step 4 is performed n
times, the full complexity is then O(n2 · d) = O(d3).

Thanks to the Discrete Fourier Transform (DFT), the evaluation of a
polynomial of degree d < n at n points can actually be computed in time
2 Th law of total probability states that for any r.v. X and any tuple of n r.v. (Yi)i,

we have Pr[X] =
P

i Pr[X | Yi] Pr[Yi].



Õ(n) instead of O(n2). Therefore the full complexity of the algorithm
becomes Õ(n2) = Õ(d2) instead of O(d3).

In the following we describe, in the context of our SCA secure multi-
plication problematic, the fast evaluation algorithm based on the DFT. In
the similar context of Multi-Party Computation, such improvement was
already known (see e.g. [7]).

4.1 Fast Polynomial Evaluation Based on DFT

Let ω a primitive nth root of unity in GF (2`) with n = 2` − 1. The n
points αi are defined as αi = ωi for 0 ≤ i < n. For simplicity we restrict
ourselves to a finite field of characteristic 2; however the algorithm can
be generalized to any characteristic.

Given as input a polynomial

a(x) =
n−1∑
j=0

aj · xj , (8)

the algorithm described hereafter aims at efficiently process the values
a(ωi) for all 0 ≤ i < n. Noting that: a(ωi) = a(x) mod (x − ωi), the
values a(ωi) can be computed using a remainder tree. As illustrated in
Figure 1, the polynomial is progressively reduced modulo the polynomials
ui,j(x), starting from the root polynomial:

u`,0(x) = (x− 0) ·
n−1∏
i=0

(x− ωi) = x2` − x

downto the leaf polynomials (x− ωi).
The DFT polynomial evaluation can actually be still improved by

optimizing the ordering of the leafs ωi so that the intermediate remain-
der polynomials ui,j(x) have a special form that enables fast modular
reduction. It is shown in [28, page 573] that there exists an ordering
(β0, β1, . . . , β2`−1) of all the elements of GF (2`), such that if u0j(x) :=
x− βj , and for 1 ≤ i ≤ `,

uij(x) = ui−1, 2j(x) · ui−1, 2j+1(x), 0 ≤ j < 2`−i,

then each polynomial ui0(x) is an ith-order linearized polynomial:

ui0(x) =
i∑

k=0

vik · x2k
,



and each polynomial uij(x), j 6= 0, is an affine polynomial and is related
to ui0(x) by uij(x) = ui0(x) + cij , for some constants cij ∈ GF (2`). Since
each polynomial uij(x) has at most i + 2 non-zero terms (instead of at
most 2i +1 for a polynomial of degree 2i), modular reduction can be done
in time quasi-linear in the degree of uij(x), instead of quadratic time (see
below).

a(x) [uℓ,0(x)]
b

a(x) [uℓ−1,0(x)] a(x) [uℓ−1,1(x)]

a(x) [u1,0(x)] a(x) [u1,2ℓ−1
−1]

a(β0) a(β1) a(β2ℓ
−2) a(β2ℓ

−1)

Fig. 1. Remainder tree for the computation of a(βi), for 0 ≤ i < 2`.

Formally, the DFT computation is defined as follows:

Algorithm 3 DFT Computation

Input: a polynomial a(x) =
Pn−1

i=0 ai · xi over GF (2`), where n = 2` − 1.

Output: the field elements a(βi), for 0 ≤ i < 2`

Public: the public polynomials uij(x)

1. Let a`0(x)← a(x)

2. for λ from `− 1 to 0

3. for j = 0 to 2`−λ − 1

4. for k = 0 to 1

5. do aλ, 2j+k(x)← aλ+1, j(x) mod uλ, 2j+k(x)

6. Return a0, j for 0 ≤ j ≤ 2`

When applied to process the fourth step of Algorithm 1, the polyno-
mial a(x) in (8) corresponds to Qi(x) (associating each coefficient of a(x)
to the corresponding coefficients in Qi(x) and setting aj = 0 for all the
indices j ∈ [d + 1;n − 1]) and the n public points αj are assumed to be
chosen equal to ωj . In such a setting, it can then be checked that the leaf
polynomials computed by the fast evaluation method described here cor-
respond to a(ωj) = Qi(αj) as expected (with the special case a(0) which
gives the already known value Wi at Step 4 of Algorithm 1).



4.2 Complexity Analysis and Parameters’ Choice

We note that the degree of the polynomials uλ,j is 2λ, which implies that
the degree of the polynomials aλ,j is at most 2λ−1. Since the polynomials
uλ,j contain at most λ + 2 non-zero terms, every modular polynomial
reduction at Step 5 has complexity O(λ2λ) = O(`2λ). For a fixed level λ
there are 2·2`−λ such reductions, which gives a total complexity O(`2`) for
a given level λ. Since there are ` levels the full complexity of Algorithm 3
is O(`2 ·2`). With n = 2`−1, we obtain a complexity O(n · log2 n) = Õ(n)
as required.3 Note that smaller values of n are possible; namely it suffices
that n|2`− 1. For example for AES with GF (28), since 28 − 1 = 3 · 5 · 17,
we can take n = 3, 5, 15, 17, 51, 85, 255.

To select a larger value of n for a fixed field size GF (2`), it suffices
to work in an extension field GF (2`·s) of GF (2`) for s > 1; then one
can take n = 2`·s − 1. The complexity of Algorithm 3 is still O(n · log2 n)
operations in the extension field GF (2`·s). Each operation in GF (2`·s) can
be computed with O(s2) = O(log2 n) operations in GF (2`). Therefore the
complexity of Algorithm 3 becomes O(n · log4 n), which is still Õ(n).

4.3 Security of the Improved Multiplication Algorithm

Since in Algorithm 1 this polynomial evaluation step is performed n times,
the full complexity becomes O(n2 · log4 n) = Õ(n2) instead of O(n3). In
the multi-party computation setting, the new algorithm is still secure
against a coalition of up to t < n/2 players; namely the polynomial eval-
uation step at Step 4 in Algorithm 1 is performed locally by each player;
therefore changing the polynomial evaluation algorithm does not mod-
ify the security property of the algorithm. In the context of side-channel
analysis, with n = 2d + 1, the algorithm is therefore still secure against a
d-th order attack.

5 Conclusion

Several works argued on the importance of identifying new sharing tech-
niques that minimize the amount of sensitive information extractable from
the family of shares in a SCA context. This is indeed of particular impor-
tance since such a sharing, combined with noise, would be able to resist to
any higher-order side-channel attack in practice, even when parametrized
with small sharing orders (e.g. 2 or 3). The polynomial sharing intro-
duced by Shamir is a promising candidate. However, it remains to define
3 We write f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) logk g(λ)) for some k ∈ N.



efficient algorithms able to operate on data shared with this technique
without introducing key-dependent leakages of order lower than the shar-
ing order. Until this work, there were essentially two algorithm proposals
to securely perform a multiplication between two shared data: one pro-
posed by Goubin and Martinelli at CHES 2011 and one adapted from an
algorithm by Ben-Or et al. at STOC in 1988. In the present paper, we
showed that the first proposal is flawed (more precisely is always broken
by a first-order SCA) and we improved the complexity of the second pro-
posal from O(d3) to Õ(d2), where d is the number of shares per data. We
think that those results are a first promising step toward efficient meth-
ods to process on data shared with Shamir’s secret sharing in embedded
systems.
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A Mutual Information Study of Goubin and Martinelli’s
scheme 1st-order flaw

We have seen in Section 3 that Goubin and Martinelli’s proposal pos-
sesses a first-order flaw whatever the masking order d of their scheme.
For the study of this flaw to be complete, we propose here an information
theoretic evaluation of the information leakage with respect to the noise
standard deviation and d. We moreover compare the quantity of sensitive
information in the flaw with that contained in the observation of the d+1
shares build thanks to Shamir’s sharing for d = 1 and d = 2.

To quantify the amount of leaking information, we modelled the re-
lationship between the physical leakage and the value of the variable
processed at the time of the leakage. For such a purpose, we associated
each (d + 1)-tuple of shares (A0, · · · , Ad) with a (d + 1)-tuple of leak-
ages L = (L0, · · · , Ld) s.t. Lj = HW(Aj) +Nj , with Nj an independent
Gaussian noise with mean 0 and standard deviation σ. We use the no-
tation L ←↩ (A0, · · · , Ad) to refer to this association. In the case of the
first-order flaw exhibited in Section 3, the leakage L is univariate and
satisfies L←↩ HW(Ci) +N with Ci being defined as in (3). In that case,
the sensitive information in the product C = (AB).

To evaluate the information revealed by each tuple of shares for the
polynomial masking technique, we computed the mutual information4

I(A,L) between the sensitive variable A and L. Similarly, in the case of
Goubin and Martinelli’s scheme, we computed the mutual information
I(AB,L) between the sensitive variable (AB) and L. We list hereafter
the leakages we considered and the underlying leaking variables:

(2, 1)-sharing leakage: L←↩ (PA(α1), PA(α2)) . (9)
(3, 2)-sharing leakage: L←↩ (PA(α1), PA(α2), PA(α3)) . (10)
Flaw in Alg. 2 for d = 1: L←↩ (Ci = (PA · PB)|1(αi)) . (11)
Flaw in Alg. 2 for d = 2: L←↩ (Ci = (PA · PB)|2(αi)) . (12)

4 As shown in [26], the number of measurements required to achieve a given success-
rate in a maximum likelihood attack can be expressed as a function of the mutual
information evaluation and equals c× I(A,L)−1, where c is a constant related to the
chosen success-rate.



Figure A summarizes the information theoretic evaluation for each
leakage (9) to (12). For d equal to 1 or 2, it can be observed that the
amount of information revealed by the d + 1 sharing elements is greater
than that revealed by the 1st-order flaw up to a certain amount of noise.
As a matter of fact, the first-order flaw is less impacted by the noise
than the 2nd-order and 3rd-order leakages. Hence, for any choice of input
parameter d in Algorithm 2 and for any Shamir’s sharing order d′ > d,
there exists a noise standard deviation σ s.t. the first-order flaw leaks more
sensitive information than the d′-tuple of Shamir’s shares. For example,
for d = 1, then the first-order flaw in Algorithm 2 leaks more information
than any d′th-order sharing with d′ > 1 as long as σ > 3.7. We also
emphasize that the traces’ resynchronization issue and the computational
complexity of the processings make higher-order SCA attacks much more
difficult to mount in practice than first-order ones. As a consequence, the
first-order flaw is even more important from a practical point of view than
suggested in Fig. A.
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Fig. 2. Mutual information (log10) between the leakage and the sensitive
variable over an increasing noise standard deviation (x-axis).
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