Dynamic Fault Injection Countermeasure
A New Conception of Java Card Security

Guillaume Barbu, Philippe Andouard, and Christophe Giraud

Oberthur Technologies
Security Group
4, allée du Doyen Georges Brus, 33 600 Pessac, France
{g.barbu,p.andouard,c.giraud}@oberthur.com

Abstract. Nowadays Fault Injection is the main threat for any sensitive
applications being executed on embedded devices. Indeed, such an attack
allows one to efficiently recover any secret or to gain unauthorized priv-
ileges if no appropriate countermeasure is implemented. In the context
of Java Card applications, the main method to counteract Fault Injec-
tion consists in adding redundancy for sensitive operations and integrity
verification for sensitive variables. While being efficient from a security
point of view, such a method substantially impacts the performance of
the application. In this article we introduce a new pragmatic approach
to counteract Fault Injection by dynamically increasing the security level
of the application. This methodology, based on upgrading the Java Card
Virtual Machine, allows us to optimize the performance of sensitive ap-
plications in every day life while providing a strong security level as soon
as an attacker tries to disturb their executions.

Keywords: Java Card, Fault Injection, Countermeasures.

1 Introduction

1996 was an amazing year for attacks in the embedded environment. Indeed, the
concepts of Side-Channel Analysis (SCA) and Fault Injection (FI) were pub-
lished that year and they allow an attacker to recover secrets stored in embedded
devices even if they are protected by very strong cryptography.

The first kind of attacks have been published by Kocher in [1] where he
noticed that the difference of time when executing an application could depend
on the secrets manipulated by the device. This attack was then extended by
using the power consumption or the electromagnetic radiation of the device as
side-channel leakage instead of the execution timing [2,3]. SCA is now reinforced
by numerous new attacks and countermeasures every year.

The second kind of attacks revealed in 1996 were published through a press
release by the company Bellcore [4]. Three researchers of this company noticed
that if the execution of a cryptographic implementation can be disturbed, then
the analysis of the corresponding faulty output can lead to the disclosure of the
secret key. The announcement of this new way of attacking embedded devices

aroused enthusiasm amongst the cryptographic community and a dozen articles
dealing with this subject were published in the few weeks after the Bellcore’s
announcement. As for SCA, a very large amount of new attacks and counter-
measures are published every year to extend the domain of FI which now applies
not only to cryptographic algorithms but to each and every kind of application
being executed on embedded devices.

These new attacks have been a major breakthrough for the smart card in-
dustry. Indeed, at the beginning of 1996, the security of embedded applications
relied on the theoretical security of the cryptography which was implemented
and on their resistance to Logical Attacks (LA) which were known for years
and for which the countermeasures were well-known. One year later, basing the
security of an application on these two factors only was hopeless. The develop-
ers had then had to invent and to implement ingenious side-channel and fault
countermeasures which must have the lowest impact on the performances of the
application.

At that time, another breakthrough occurred in the smart card environ-
ment: the first Java enabled smart card was produced [5]. Java Cards allow the
developer to implement an application independently from the device on which
it is going to be executed. Such an abstraction layer is provided by the Java
Card Virtual Machine (JCVM) which interprets the Java basic instructions,
called bytecodes, and executes the corresponding instructions for a specific de-
vice. Therefore, executing a brand new Java Card application on each and every
Java Card on the market costs only one development, leading to the very fast
deployment of such an application which cannot be achieved when using native
products. Originally used in the mobile environment, Java Cards are now widely
used in banking and identity environments where the constraints in terms of
security are very strong. Therefore Java Card applications, called applets, pos-
sibly together with the JCVM, must implement logical, side-channel and fault
countermeasures to prevent them from being tampered with.

In this work we present a new way of counteracting FI attacks in the context
of Java Cards. Up to now, securing an applet against fault attacks means mainly
adding redundancy on sensitive operations and verifying the integrity of the sen-
sitive objects at the applet level. Although being efficient against FI, this leads
to a very important overhead in terms of performance and memory consump-
tion. This approach faces its limit when the application has strong constraints
in terms of performances which is always the case for contactless applications
for instance. Moreover, our new solution also aims at another problematic: why
would honest customers (which are the vast majority) have to pay for the dis-
honest ones? For instance, why would they have to wait 400us to perform a
transaction whereas the same application could run twice as fast if fault coun-
termeasures were removed? Our concept is based on upgrading the JCVM in
order to dynamically enforce the security level of an application when detecting
an attack. This allows the device to execute by default an application with crit-
ical countermeasures only, being thus very fast, and to activate the maximum
security level as soon as an attack is detected.

The rest of this paper is organised as follows. In Section 2 we recall some
generalities about fault attacks on Java Cards as well as a brief description of the
main corresponding countermeasures. In Section 3 we present our new protection
concept and we describe two different ways of applying it in practice. We also
discuss the benefits and drawbacks of our proposals versus the traditional way of
securing an application by adding redundancy and integrity verifications. Finally,
Section 4 concludes the paper.

2 Fault Injection Attacks and Common Countermeasures

FI attacks and the analysis of their consequences are well-known in the context
of embedded cryptography [6]. However, as stated in [7] and [8], such attacks are
absolutely not restricted to arithmetic computations or cryptographic algorithms
and are then likely to target any part of an embedded system.

In this section, we briefly present the most common FI attacks against Java
Card platform and how they have been combined with LA to bypass specific Java
Card security mechanisms. Secondly, we present the usual countermeasures to
prevent such attacks.

2.1 Attacks against Java Card Platforms

The first attacks that have been mounted against Java Card platforms were
LA. These are usually based on the corruption of the binary representation of a
Java Card application (.CAP or .CLASS file) into a so-called ill-formed application
before it is loaded on-card [9]. Such modifications aim at circumventing certain
controls enforced by the JCVM. However in most cases, they also make the
application illegal with regards to the Java Card specifications. Therefore the
modified application should not be able to pass static analysis tools such as
the Java bytecode verifier. The bytecode verification being a costly process, it
is generally executed off-card on Java Card 2.2.2 and earlier, as a part of the
application development tool chain. The usual philosophy of LA is then to skip
this step and to directly load unverified applications on platforms allowing it.

On the other hand, FI has been mainly used on Java Card applications to
disrupt conditional branching instructions to force a jump in a given branch,
favorable to the attacker [10]. For instance, let us observe the piece of code
depicted in Listings 1 and 2 which update the balance of an electronic wallet

depending on whether there is a purchase or a refund.

Listing 1. Standard if-then-else state- Listing 2. Standard if-then-else state-

ment ment (bytecode sequence)

// assume b is a boolean. iload_1

if (b)) { ifeq L1
// e—wallet credit // e—wallet credit

goto L2

else { Ll1: // e—wallet debit
// e—wallet debit L2:

}

Although the test if is performed on a boolean variable, one may note that
there is no boolean type at the bytecode level. The Java compiler produces
only bytecodes manipulating values of type int when processing operations on
boolean variables. Therefore the Java specifications mandate that any value dif-
ferent from 0 will be considered as true. From this remark, an attacker disturbing
b when performing a purchase will obtain a credit of her e-wallet instead of a
debit.

FI have also been used to disturb values returned by methods of the APIs.
For instance, the arrayCompare () method returns 0 if the two buffers provided
as input are identical. If such a method is used to compare a PIN (Personal
Identification Number) or a MAC (Message Authentication Code), an attacker
presenting a wrong value can force its acceptance by sticking at 0 the corre-
sponding return value.

Moreover, it is now common to assume that attackers with high attack potential
are able to perform two faults during the execution of the same command [11].
This statement has a strong impact on the cost of the countermeasures as it will
be shown in Section 2.2.

To conclude this brief overview of attacks on Java Card platforms, we recall
that recently the use of FI to provoke incorrect behaviours within a malicious
but well-formed application appeared as a possible solution to attack Java Card
platforms where the bytecode verification is mandatory [12,13]. In these pub-
lications, FI is used to bypass certain security mechanisms in order to allow a
LA. The so-called Combined Attacks allow then to take benefits of both FI and
LA. Indeed, they are more realistic than LA since they do not rely on an unveri-
fied application loading and potentially more powerful than FI attacks since the
malicious application can make permanent changes and act like a Trojan inside
the card [14].

2.2 Common Countermeasures and Main Drawbacks

As presented above, FI is a real threat for sensitive applications being executed
on a Java Card platform. To counteract such attacks, applet developers must
implement specific countermeasures to detect any incoherence during the ap-
plet execution. As FI mainly focuses on disturbing conditional branchings and

Listing 3. 2"%-order-secured if-then- Listing 4. 2"%-order-secured if-then-

else statement else statement (bytecode sequence)
// assume b is a boolean. iload_1
if ((!'b) { ifne L1
// e—wallet debit // e—wallet debit
} goto L2
else if (b) { L1: iload-1
if (b)) { ifeq L3
ISOException. throwlIt (iload_1
ATTDETSW); ifne L4
} bipush 18 <ATTDET.SW>
else if (b) { invokestatic #6 <throwIt>
// e—wallet credit goto L2
L4: iload_1
else { ifeq L5
ISOException. throwIt (// e—wallet credit
ATTDETSW); goto L2
} L5: bipush 18 <ATT DET SW>
} invokestatic #6 <throwlt>
else { goto L2
ISOException. throwlt (L3: bipush 18 <ATTDET.SW>
ATTDETSW); invokestatic #6 <throwlIt>
} L2: ...

methods execution, one of the most efficient way to detect a disturbance is to
add redundancy for each and every sensitive conditional branching and call to
a sensitive method. For instance, if we want to protect the if used in the code
of Listing 1 against double fault attacks, one has to add redundancy testing in
the branch favorable to the attacker such as depicted in Listings 3 and 4.

As one can easily observe by comparing Listings 1 and 3, the cost of such a
countermeasure is very important. Table 1 illustrates the size and the execution
time of both the unsecured and secured versions of the previous sample code.

In order to overcome any specific platform implementation, and therefore
specific optimizations, the extra execution time is expressed in terms of number
of executed instructions multiplied by t;,s where ¢;,s is the average execution
time for an instruction.

Table 1. Compared size and execution time overhead of unsecured and 2"%-order-
secured if-then-else statement.

Mnemonic Listing | Size (byte) | Timing
Unsecured 2 0 0
2" order-secured 4 30 6 - tins

Such an approach is also valid to protect disturbance of methods execution,
for instance by executing three times the method arrayCompare () and checking
that the three different outputs are coherent. This will therefore multiply by a
factor 3 the time required to compare two buffers.

To ensure the security of an application, it is of common sense to implement
protections against the most efficient practical attacks which are currently double
fault attacks. However, even for the best attackers, it is impossible to achieve
such attacks the first time round. Indeed, the attacker will have a few failures
before succeeding in bypassing a double conditional testing for instance. From
this observation, an obvious solution would be to deactivate all security sensitive
applications if the card is under attack. However, such an option cannot be
applied in some contexts where the provider wants to keep the functionality
alive as long as possible (e.g. in the context of Secure Elements or SIM cards).
In the next section, we present a new security concept for Java Card platforms.
This new methodology is based on modifying the JCVM in such a way that it
can dynamically increase the security level of the application when an attack
attempt is detected.

3 Dynamic Fault Injection Countermeasure: A Generic
Concept Available in Different Flavours

As stated in Section 2, common countermeasures against FI strongly penalize
the performance of Java Card applications on a permanent basis. However, ap-
plications deployed on the field do not always have to face a real attacker. This
section describes how the security of Java Card applications can be modulated by
the JCVM without loss of security insurance and details two particular methods
to implement this dynamic security concept.

3.1 The Dynamic Security Concept

The execution of an application within the JCVM relies on the interpretation
of the bytecode instructions it is made of. Typically, we can consider that the
JCVM interpreter associates a given bytecode value to a given function, imple-
menting the Java instruction, according to the JCVM specification [15]. The
interpretation of an application is then operated according to a fetch-decode-
execute sequence, similarly to most real machines (by opposition to wvirtual
machines), where:

fetch corresponds to the reading of the instruction value in the bytecode array
of the current method;

decode corresponds to the translation from the read integer value to the func-
tion implementing the corresponding bytecode instruction in the underlying
machine’s language;

execute corresponds to the execution of the selected function.

Having hands on this sequence, the JCVM can dynamically alter these
different steps in order to modify the behaviour of an application on the fly.
The generic concept we describe here consists in using this capacity to adapt
the security level of a given application to the threats it actually faces. That
is to say that the JCVM initially enforces a given security level which will be
raised if an attack is detected. As a result, the performance of the application
are preserved for honest users whereas attackers will have to deal with the
augmented security level.

The security insurance of our concept relies on the state of fact that a few
attempts at least are necessary before achieving a successful FI attack. After
the detection of a first attack, potentially all countermeasures are activated and
the security of the application is ensured in a traditional way.

A prerequisite to the implementation of our concept is then to be able to
categorize the different countermeasures ensuring the security of the application
into different groups, so that the first group of countermeasures would be always
activated, whereas the other group(s) would be activated only after an attack
has been detected, according to our concept.

Several options can be adopted to achieve such a discrimination, either based
on the attacker’s fault injection capabilities or on the data to protect.

Fault attack order First, we can categorize the countermeasures according
to the order of the fault attack they are meant to counteract. That is to
say that countermeasures against 1%¢-order attacks (i.e. single fault attacks)
would be always activated, 2"%-order attack would only be activated if an
attack is detected, etc.

Standardized asset hierarchy Second, we can categorize the countermea-
sures according to the sensitivity of the assets they protect. For instance
in the scope of a banking application, countermeasures protecting primary
assets, such as the PIN and the DES and RSA secret keys, would be always
activated, whereas countermeasures protecting secondary assets, such as the
PTC (PIN Try Counter) and the CRM (Card Risk Management), would
only be activated if an attack is detected.

Custom asset hierarchy Similarly, we can imagine to let application devel-
opers define and organize the assets by using dedicated annotations for in-
stance.

In the following sections, we propose different solutions to implement the
dynamic security concept and we discuss their relative advantages.

3.2 Vanilla: Inhibiting Security Bytecode Instructions

To save memory in resource constrained devices like smart cards, Java Card
bytecode run by the JCVM uses an encoding optimized for size. As a design

tradeoff, Java Card bytecodes are coded on one byte. Nevertheless, only 186
bytecodes are standardized in the context of the JCVM [15], thus leaving free
70 possible proprietary bytecodes.

Bourbon Vanilla: Inhibiting Instructions. Our first proposition is to take
advantage of the unused bytecodes by completing the standard instruction set
with some security-specific instructions. These new security-specific bytecodes
will be recognized by the JCVM and not executed (i.e. inhibited) while no attack
has been detected.

On the other hand, once an attack is detected, the execution of these byte-
codes will be disinhibited and the extra security will be enabled for the next ex-
ecutions. Those bytecodes (the inhib_* below) would implement classical coun-
termeasures, such as:

— executing a software desynchronization function (e.g. inhib_desynchro).

— verifying the integrity of the currently executing application (e.g.
inhib_appcre).

— verifying the types of the current local variables (e.g. inhib_typesafe).

— redundant check of a previous if* instruction (e.g. inhib_if*red).

Based on unused opcodes and classical countermeasures previously described,
one is now able to fill up the Java Card instruction set. Table 2 gives one example
of this concept.

Table 2. Filling up the instruction set.

Bytecodes | 0x00 0x01 . 0xB8 0xB9
Instructions| nop aconst_null ... |putfield_i_this|inhib_desynchro
Bytecodes e 0xBC e 0xFE OxFF
Instructions| ... |inhib_typesafe| ... impdep1 impdep2

The next step consists in adding those new bytecodes in the code of an applet.
One way to achieve this is to perform a post processing on the .CLASS file from
custom rules that add security bytecodes when needed. For instance, each time
the function OwnerPIN.check is invoked, the inhib_desynchro bytecode could
be added just before the invocation. Listings 5 and 6 show how this can be
applied to the if statement used so far as example.

Such insertion, as well as the numerous modifications on either the .CLASS

or .CAP file it implies can be easily achieved by using public tools such as
BCEL [16], or CAPMAP [17].

Listing 5. Initial source code Listing 6. Bourbon Vanilla-secured
// assume b is a boolean. bytecode
if (b) { iload_1
// e—wallet debit ifne L1
} // e—wallet debit
else if (b) { goto L2
// e—wallet credit L1: inhib_desynchro
} iload_1
else { ifeq L3
ISOException. throwlIt (inhib_ifeq-red L3
ATT DETSW) ; // e—wallet credit
} goto L2

L3: bipush 18 <ATTDETSW>
invokestatic #6 <throwlt>
L2:

From now on, by using a dedicated flag of a state machine that indicates
whether an attack has been detected or not, the JCVM can enable or disable
the security-specific instructions freshly added in the instruction set. Listing 7
describes a way to achieve this goal by modifying the interpreter routine.

This proposition is based on a tradeoff between reaching a high-level of secu-
rity without impacting the performances when it is not necessary. The solution
presented above can be fully automated which implies that no human interven-
tion is required in the process of applet protection.

Still exploiting the concept of inhibiting instructions, we propose another
approach which involves the developer in the process of applet protection. The
next section introduces such a concept and develops how it could be deployed.

Tahitian Vanilla: Inhibiting Sequences of Instructions. The idea devel-
oped above is based on dedicated bytecodes that, when they will be interpreted
by the JCVM, will trigger specific countermeasures implemented by the plat-
form. Another embodiment of the previous concept is to leave the choice to the
developer to inhibit certain portions of his code, in order to increase the applet
security when needed. So, one solution is that the JCVM conditionally triggers
the execution of bytecode instructions. This mechanism can be implemented in
two stages.

First, specific methods in the applet code delimit the part corresponding
to the extra security added by the developer (e.g. Protection.begin()
and Protection.end()) as depicted in Listing 9. These two methods are
static and are defined via a proprietary API which implementation allow to
activate/inhibit the instructions living between the static methods markups. In
order to perform the activation/inhibition, again the interpreter routine must
be modified as exposed in Listing 8 for instance.

Finally, two scenarii are possible:

10

Listing 7. Inhibition of security-specific bytecodes

// The instruction is read from memory
instruction = fetch ();

// Test Inhibiting or not the instruction
if (isSecuritySpecific(instruction)) {
if (!flagAttack) {
if (flagAttack) {
// Fault detected

}
// No attack, no execution of security instruction
}
else {
if (!flagAttack) {
// Fault detected
}
// An attack has been detected
execute(decode(instruction));
}
}
else {
// Protection against fault attacks
if (!isSecuritySpecific(instruction)) {
// No attack has been detected
execute(decode(instruction));
}
}

— no attack has been detected and the JCVM does not execute the instructions
comprised between the invokestatic #X and invokestatic #Y bytecodes
where #X (resp. #Y) corresponds to the method that enable (resp. disable)
the security (see Listing 10).

— an attack has been detected and the JCVM executes all the bytecodes cor-
responding to the extra security added between the invokestatic #X and
invokestatic #Y bytecodes.

Discussion Ensuring that an applet can trigger tuned levels of security counter-
measures only when specific threats are detected can be done via an enrichment
of the language recognized by the JCVM. Our first proposition consists in defin-
ing new bytecodes in the JCVM. Thus, those security bytecodes can be added
anywhere in the .CLASS file and are not executed while a specific flag is not raised.
Our second proposition makes use of static methods as markups, to inhibit the
non-crucial countermeasures until an attack is detected.

11

Listing 8. Inhibition of blocks of bytecodes

// The instruction is read from memory
instruction = fetch ();

// Test Inhibiting or not the instruction
if (openMarkup && !isCloseMarkup (instruction)) {
if (!flagAttack) {
if (flagAttack) {
// Fault Attack detected
}

// No attack, no execution of security instruction
// except to close markup

}
else {
if (!flagAttack) {
// Fault detected
}
// An attack has been detected
execute(decode(instruction));
}
}
else {
// Protection against fault attack
if (l!openMarkup || isCloseMarkup (instruction)) {
// No attack has been detected
execute(decode(instruction));
}
}

Table 3 presents the overhead for both propositions in terms of memory
footprint and execution time when no attack has been detected compared to
the traditional way of securing an applet. As exposed in Listings 7 and 8, an
additional if is executed within the interpreter routine in order to determine
whether an instruction should be first decoded and then executed or not.

Such instructions, at the native level, do not take more than a couple of cycles
to be executed. Therefore their impact is limited, although it should not be com-
pletely omitted. Consequently, the execution time of an instruction, expressed as
tins = tfetch + tdecode T tezecute becomes t'/,ng = tfetch +2- tzf + tdecode T tezecute-
Subsequently, we denote by nc..q the number of instructions for the credit op-
eration.

Both these solutions afford a better time/security tradeoff than the common
countermeasure. However, we observe that the Bourbon Vanilla implementation
also allows to reduce the size of the applet. This is due to the fact that the
security mechanisms are deported within the JCVM in this case. On the other
hand, Tahitian Vanilla is equivalent to the traditional method in terms of

12

Listing 9. Source code with security Listing 10. Bytecode with security

markups markups
// assume b is a boolean. iload_1
if (!b) { ifne L1
// e—wallet debit // e—wallet debit
} goto L2
else { L1: iload_-1
if (b) { ifeq L3
Protection.begin (); invokestatic #7 <begin>
if (b)) { iload_1
ISOException. throwlIt (ifne 14
ATTDETSW); bipush 18 <ATTDET_SW>
invokestatic #6 <throwlt>
else if (b) { goto L2
Protection.end (); L4: iload-1
//e—wallet credit ifeq L6
} invokestatic #8 <end>
else { // e—wallet credit
ISOException . throwlt (goto L2
ATTDET.SW); L6: bipush 18 <ATT.DETSW>
} invokestatic #6 <throwlIt>
} goto L2
else { L3: bipush 18 <ATT DET SW>
ISOException. throwIt (invokestatic #6 <throwlt>
ATTDETSW); L2:
}
}

memory footprint, only the markups being added.

However, these two solutions require modifications of both the applet and the
JCVM. The main impact of this approach is that the applet loses its portability.

In the following we propose another approach where the applet is not modi-
fied to keep its portability feature.

3.3 Strawberry: Inhibiting Secured Bytecode Implementations

The main design goals of the Java Card technology are portability and security.
Nevertheless, the protection mechanism presented in Section 3.2 is at the cost
of the portability: the “write once, run everywhere” principle does not hold
anymore.

On the other hand, one does not want a security mechanism that impacts
performances (in term of execution time or code size) when the applet is not
under attack.

13

Table 3. Compared size and execution time overhead of the 2"%-order-secured and
vanilla-secured if.

Mnemonic Listing | Size (byte) Timing
2"?_order-secured 4 30 6 - tins
Bourbon Vanilla 6 13 2 iy (5+ Nerea)

+2 - (tfeteh + 2 tig)
2. (3 + ncred) : tzf
+4 - tins + T+ (treten + 2 - tiy)

Tahitian Vanilla 10 36

To circumvent this issue and keep the portability feature of an applet, an
approach consists in different interpretations of a bytecode depending on the
execution context (e.g. nominal or under attack). For instance one can implement
two different versions of bytecodes: a secure and a non-secure. Thus, by default
the JCVM executes the non-secure versions of the bytecodes while when an
attack is detected, the secure implementation is executed (see Listing 11).

Listing 11. Inhibited secure bytecodes implementation

// The instruction is read from memory
instruction = fetch ();

// Switch between non—secure or secure implementation
if (flagAttack) {
// Ezecution of the secure implementation
execute(decodeSecure(instruction));

}
else {
// Protection against fault attacks
if (!flagAttack) {
execute(decode(instruction));
}
else {
// Fault Attack detected
}
}

As FI on Java Card mainly focuses on disturbing conditional branchings and
methods execution, it follows that not each and every bytecode in the applet
needs to be protected. So, it is sufficient to apply this principle only on bytecodes
that are sensitive to fault attacks (e.g. ifeq, ifne, sipush, etc.) and on sensitive
APT methods (e.g. OwnerPIN.check, JCSystem.arrayCompare, etc.).

14

A secured ifeq implementation should, for instance, ensure the integrity of
the value read from the operand stack as well as that of the branch taken. The
integrity of the value pushed onto the operand stack is liable to a secured imple-
mentation of the sipush instruction or of the arrayCompare API for instance.

The if-then-else statement could then be written straightforwardly, as in
Listing 1, the security being dynamically ensured by the JCVM.

Discussion Although coding two versions of bytecodes is a costly process that
increases the JCVM’s size, it nevertheless has several advantages.

Firstly, unlike the methods detailed in Section 3.2, this approach does not
need a modification of the applet. It follows that the applet does not break off
the portability paradigm and can be deployed on any standard JCVM.

Secondly, coding an applet while adding security requires a lot of experience
to obtain a good tradeoff between execution time, code size and security. So,
using that method, even a developer who is not familiar with the concept of FI
can develop an applet on a product that could be evaluated and certified.

Moreover, with that approach, there is no need to involve a third party to
perform a security proofreading of the applet.

Table 4 presents the additional cost for the Strawberry proposition in terms
of memory footprint and execution time when no attack has been detected. As
for the Vanilla methods, the execution time estimations take into account the
additional if added within the interpreter routine which is the only overhead
for this method, as exposed in Listing 11.

2nd

Table 4. Compared size and execution time overhead of the -order-secured and

Strawberry-secured if.

Mnemonic Listing | Size (byte) Timing
2"%_order-secured 4 30 6 - tins
Strawberry 2 0 (2-tif) - (B4 ncrea)

Anyway, all the solutions described in Sections 3.2 and 3.3 are not mutually
exclusive and can be used in a very flexible way. Indeed, depending on the
context, one can adopt a hybrid approach by combining the previous solutions
leading to a greater security for the product.

4 Conclusion

In this paper we presented a new approach to protect Java Card platform against
Fault Injection. This new methodology allows sensitive applications to run much
faster in every day life while providing a very high security level against fault

15

attacks. By modifying the JCVM, we showed how such a concept can be imple-
mented in practice in two different ways. The first one consists in adding dedi-
cated bytecodes which provides specific security features such as redundancy or
desynchronization. These bytecodes will be inhibited until a threat is detected.
The second solution consists in implementing some bytecodes twice: one im-
plementation being the standard one and the second implementation including
advanced fault countermeasures. The JCVM switches from the first implemen-
tation to the second one as soon as an attack is detected. We also compared
the advantages and drawbacks of each solution in order to provide all useful
information to Java Card developers allowing them to choose the best possible
solution depending on their context.

This new methodology is definitely more pragmatic than the traditional ap-
proach as it allows Java Card applications to fulfill performances requirements
more easily while successfully counteracting advanced fault injection attacks.

Acknowledgments

The authors would like to thank Emmanuelle Dottax for her helpful comments
on the preliminary version of this paper.

References

1. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Koblitz, N., ed.: Advances in Cryptology — CRYPTO ’96.
Volume 1109 of LNCS., Springer (1996) 104-113

2. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In Wiener, M., ed.:
Advances in Cryptology — CRYPTO ’99. Volume 1666 of LNCS., Springer (1999)
388-397

3. Quisquater, J.J., Samyde, D.: A New Tool for Non-intrusive Analysis of Smart
Cards Based on Electro-magnetic Emissions, the SEMA and DEMA Methods.
Presented during EUROCRYPT’00 Rump Session (2000)

4. Bellcore: New Threat Model Breaks Crypto Codes. Press Release (1996)

5. du Castel, B.: Personal History of the Java Card (2012) French version originally
published in MISC magazine, HS-2, Nov. 2008.

6. Joye, M., Tunstall, M.: Fault Analysis in Cryptography. Information Security and
Cryptography. Springer (2012)

7. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. IEEE 94 (2006) 370-382

8. Giraud, C., Thiebeauld, H.: A Survey on Fault Attacks. In Quisquater, J.J., Parad-
inas, P., Deswarte, Y., Kalam, A.E., eds.: Smart Card Research and Advanced
Applications VI — CARDIS 2004, Kluwer Academic Publishers (2004) 159-176

9. Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In Grimaud, G., Standaert, F.X., eds.: Smart Card Research
and Advanced Applications, 8th International Conference — CARDIS 2008. Volume
5189 of LNCS., Springer (2008) 1-16

16

10.

11.
12.

13.

14.

15.

16.

17.

Barbu, G., Duc, G., Hoogvorst, P.: Java Card Operand Stack: Fault Attacks, Com-
bined Attacks and Countermeasures. In Prouff, E., ed.: Smart Card Research and
Advanced Applications, 10th International Conference — CARDIS 2011. Volume
7079 of LNCS., Springer (2011) 297-313

Common Criteria: Application of Attack Potential to Smartcards. (2009)

Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In Gollmann, D., Lanet, J.L., eds.: Smart Card Research and
Advanced Applications, 9th International Conference — CARDIS 2010. Volume
6035 of LNCS., Springer (2010) 148-163

Vétillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In Gollmann,
D., Lanet, J.L., eds.: Smart Card Research and Advanced Applications, 9th In-
ternational Conference — CARDIS 2010. Volume 6035 of LNCS., Springer (2010)
133-147

Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In Prouff, E., ed.: Smart Card Research
and Advanced Applications, 10th International Conference — CARDIS 2011. Vol-
ume 7079 of LNCS., Springer (2011)

Sun Microsystems Inc.: Virtual Machine Specification — Java Card Plateform,
Version 3.0.1 (2009)

The Apache Software Foundation: (Apache Commons BCEL, The Byte Code
Engineering Library) http://commons.apache.org/bcel/.

Smart Secure Devices (SSD) Team — XLIM, Université de Limoges: CapMap —
The CAP file manipulator. (http://secinfo.msi.unilim.fr)

http://commons.apache.org/bcel/
http://secinfo.msi.unilim.fr

	Dynamic Fault Injection Countermeasure

