
Multipurpose Cryptographic Primitive ARMADILLO3

Petr Sušil⋆ , Serge Vaudenay

EPFL, Lausanne, Switzerland

{petr.susil, serge.vaudenay}@epfl.ch

Abstract. This paper describes a new design of the multipurpose cryptographic

primitive ARMADILLO3 and analyses its security. The ARMADILLO3 family is

oriented on small hardware such as smart cards and RFID chips. The origi-

nal design ARMADILLO and its variants were analyzed by Sepehrdad et al. at

CARDIS’11, the recommended variant ARMADILLO2 was analyzed by Plasen-

cia et al. at FSE’12 and by Abdelraheem et al. at ASIACRYPT’11. The AR-

MADILLO3 design takes the original approach of combining a substitution and a

permutation layer. The new family ARMADILLO3 introduces a reduced-size sub-

stitution layer with 3× 3 and 4× 4 S-boxes, which covers the substitution layer

from 25% to 100% of state bits, depending on the security requirements. We

propose an instance ARMADILLO3-A1/4 with a pair of permutations and S-boxes

applied on 25% of state bits at each stage.

1 Introduction

Tiny computing devices such as smart cards, sensor networks and RFID tags are be-

coming more and more widespread. The implementation of standardized cryptographic

algorithms such as the block cipher AES [21] or the hash functions SHA [10] are very

expensive in terms of the number of gates and power consumption. Moreover, the secu-

rity requirements of these tiny devices are often weaker than which of algorithms such

as AES or SHA. The widespread usage of the constrained devices triggered a sponta-

neous competition for the tiniest and the most secure designs. There have been several

designs of such primitives [5, 8, 9, 14, 15, 17, 25].

Since these devices communicate over an insecure channel, usually a wireless channel,

there is a threat of an attacker trying to listen to the communication or trying to im-

personate a server or another device. Therefore, there is a need for an authentication

protocol to provide authenticity of the device, and an encryption to provide the confi-

dentiality. However, as we want to reduce the implementation cost as much as possible,

it is important to find a universal design, which can be used in many different appli-

cations. This allows to further reduce the implementation cost, as it is not necessary

to implement multiple algorithms on the small device. Some recent designs deal with

this issue by reusing some parts of the implementation, for instance the hash function

QUARK [2] and the message authentication code SQUASH-128 [23] use some com-

ponents of the stream cipher GRAIN [14]. This approach is the first step towards a

multipurpose cryptographic primitive, that can be used in all applications.

⋆ Supported by a grant of the Swiss National Science Foundation, 200021 134860/1. This work

has been supported in part by the European Commission through the ICT program under con-

tract ICT-2007-216646 ECRYPT II.



We introduce a new primitive ARMADILLO3 which is designed to be used as a message

authentication code (MAC), a hash function and a pseudo-random number generator.

The ARMADILLO3 is the third generation of the multipurpose cryptographic function

ARMADILLO [3] introduced at CHES’10. The new version ARMADILLO3 prevents all

known attacks against the ARMADILLO [22] design and the attack against ARMADILLO2

based on parallel matching [1], and Hamming weight preservation in PRNG mode [19].

We provide a security analysis against known types of attacks and discuss some dedi-

cated attacks and counter-measures. We support our security claims using the security

analysis based on properties of the underlying expander graph of ARMADILLO3.

The ARMADILLO is a family of cryptographic functions based on data dependent per-

mutations. That is, we use an internal function P defined by P(p‖b,Z) = P(p,S(Zσb
))

iteratively, where b is the tailing bit of the first operand p‖b, S is a substitution layer, σb

is a permutation (σ0 or σ1) and Zσb
denotes the transposition of Z based on permutation

σb. The extension ARMADILLO3 adopts a preprocessing to prevent the known attacks

against ARMADILLO1 reported in [22], and it introduces a reduced-size S-box layer to

improve the confusion of ARMADILLO2 which lead to a practical low complexity attack

reported in [19].

The ARMADILLO3 internal function generalizes the SPN structure by introducing a

second permutation. In every round, we choose one of the two permutations based on a

pseudorandom value.The internal function is then followed by an XOR with the input

and the control register value similar to the Davies-Meyer construction.

The ARMADILLO3 reduces the number of S-boxes due to both the higher number of

rounds and the pseudorandom selection of the permutation. This means that only some

bits of the internal state go through the S-boxes in a single round. The pair of permu-

tations for ARMADILLO3 has to be selected in such a way that even when the attacker

controls the selection of the permutation at every round, which is the case for hash func-

tions, she should be unable to prevent the diffusion of the input. Therefore, the selection

of the two permutations is a non-trivial task. We introduce a notion of Hierarchical Per-

mutations which ensure that every bit goes through an S-box in a minimum number

of steps for all possible sequences of data-dependent permutations, while making no

significant restrictions on other properties of these permutations. The selection of the

final pair is based on the diffusion properties of both permutations and the expansion

properties of the expander graph corresponding to the pair of the permutations.

2 The ARMADILLO3 function

The ARMADILLO3 is based on a recursive function P which takes two parameters

P(Y,X). The register Y is used as a control register for selecting the permutation in

each step of the function P, and the ith step of P consists of applying permutation σ0 or

σ1, depending on the value Y [i], and the S-boxes on specified bits. Since the value Y has

to be pseudo-random which is difficult to control for an attacker, we set Y = P(X ,X) for

2



an input X . Therefore, the ARMADILLO3 consists of two steps: preprocessing step for

computing the value Y and the computation of P(Y,X) followed by an XOR with the

input X and the control register Y . We give recursive definition of ARMADILLO3 fol-

lowed by the pseudo-code. The parameters for the algorithm are: the type of S-boxes,

the number and placement of S-boxes, and the permutation pair.

The ARMADILLO3 algorithm on input W = H‖X is defined as follows.

ARMADILLO3(W) = P(Y,W)⊕W⊕Y, for

Y = P(W,W)

P(p‖b,Z) = P(p,S(Zσb
))

P(λ,Z) = Z

where p denotes a bit string, b denotes a bit, S denotes the substitution layer which is de-

fined separately, and λ denotes the empty string. The substitution layer of ARMADILLO3

consists of r identical t× t S-boxes. In our example, i.e., ARMADILLO3-A1/4, we build

the permutation pair σ0, σ1 for the placement of 3×3 S-boxes at positions 0-32 (so we

have 11 3× 3 S-boxes), which gives the “coverage rate” = rt
k

, where k is the size of

register Y.

Y = P(H‖Xi,H‖Xi)

Xi

H

✻

❄

k

✛
✻

H Xi

✲✛
c m

✛✲

✲ ✛

✻ ✻

✛

✻

P(Y,H‖Xi)

✲
✲✲

Y ...

⊕
✻

✻

✛✲m

X’H’

Fig. 1. Scheme of ARMADILLO3.

3



Algorithm 1 ARMADILLO3 pseudo-code

input X, H

W = H‖X
R = H‖X
for i=0 to |W| do

b = W[i]
R← S(Rσb

)
end for

for i=0 to |W| do

b = P[i]
W← S(Wσb

)
end for

return W

The substitution layer S, i.e., the S-boxes and the bits covered by S-boxes, together with permu-

tations σ0, σ1 are defined later for ARMADILLO3-A1/4.

The function ARMADILLO3 differs from the original design ARMADILLO1 [3] in sev-

eral ways. Like ARMADILLO2 [3], it has an internal register of size k instead of 2k,

which makes the design more compact, and as ARMADILLO2 it also includes a pre-

processing step, i.e., Y = P(H‖X,H‖X). The preprocessing prevents the attacker from

controlling the permutation P(Y,H‖X), since it is difficult for an attacker to predict

Y = P(H‖X,H‖X) without a knowledge of H. In the case of the hash function, when the

attacker knows the value H or is allowed to choose this value to find a pseudocollision,

the attacker can only control the register in the preprocessing phase. The ARMADILLO3

differs from ARMADILLO2 [3] by removing the XOR with a constant and adding a

reduced-size substitution layer.

2.1 Modes of Operations in ARMADILLO3

FIL-MAC The fixed input-length message authentication code is required in RFID ap-

plications. The output X’ is used for authentication of the tag. In applications such as

Pathchecker [20], the secret key of the RFID tag is renewed with the value H’.

Hashing For a variable-length input message we use the strengthened Merkle-Damgård

construction [18, 7]. The ARMADILLO3 is used as a compression function. The value H

is taken as the IV and the compression function ARMADILLO3 produces H’ which is the

new IV. The value X is a message block to be processed. Such construction is similar to

a sponge construction proposed in [4]. The inner function of ARMADILLO3 could also

be used in a sponge construction as an alternative to our construction.

PRNG, PRF In this mode we use the j most significant bits of the output value (H’‖X’)=
ARMADILLO3(H,X), where j is a parameter. The input value X is chosen sequentially,

and can be sent in clear for the resynchronization purposes for a self-synchronizing

stream cipher.

4



2.2 The permutation pair for ARMADILLO3

We introduce a concept of Hierarchical Permutation which ensures the avalanche effect

in small number of rounds even if the selection of permutations is under full control

of the attacker. Given the set of indices X and a set of indices S, covered by S-boxes,

we define a height of i ∈ X for the permutation π as h(i) = min j{ j : π j(i) ∈ S}. We

now explain how to build the Hierarchical permutation for t × t S-boxes, and give a

concrete example for the case t = 3. We suppose that the layer of S-boxes covers bits

[0, tr−1]. We define sets of indices Ai, Bi, and Ci so that
h

∑
i=0

|Ai|+
h−1

∑
i=0

|Bi|+
h−2

∑
i=0

|Ci|= k,

i.e., Ai, Bi, Ci are partitions of [0,k−1]. In the case t = 3 let a, b and c be integers such

that a+ b+ c = 3r, and similarly in the case t = 4 let a, b, c and d be integers such

that a+ b+ c+ d = 4r. Ideally, we would have a = b = c = r, but this is not always

possible. So, we target a ≈ b ≈ c ≈ r. We define several sets Ai, Bi and Ci to partition

{0,1,2, . . . ,k− 1}: Ah = {a+ b+ c, . . . ,2a+ b+ c− 1}, Ah−1 = {2a+ b+ c, . . .,3a+
b+ c− 1}, Bh−1 = {3a+ b+ c, . . . ,3a+ 2b+ c− 1}, Ah−2 = {3a+ 2b+ c, . . . ,4a+
2b+ c− 1}, Bh−2 = {4a+ 2b+ c, . . . ,4a+ 3b+ c− 1}, Ch−2 = {4a+ 3b+ c, . . . ,4a+
3b+2c−1}, Ah−3 = {4a+3b+2c, . . . ,5a+3b+2c−1}, . . . , A0 = {0,1,2, . . . ,a−1},
B0 = {a, . . . ,a+ b− 1}, C0 = {a+ b, . . . ,a+ b+ c− 1}. In what follows, ABi denotes

the union of Ai and Bi. ABCi denotes the union of Ai, Bi, and Ci. We further define

pairwise disjoint sets Ah+1, Bh, and Ch−1 so that Ah+1 ∪Bh ∪Ch−1 = S = ABC0 and

that output bits from an S-box fall into different sets Ah+1, Bh and Ch−1 (with very few

exceptions). In the case when |Ah+1|= |Bh|= |Ch−1| we set Ah+1 = {3i : i ∈ [0,r−1]},
Bh = {3i+1 : i∈ [0,r−1]} and Ch−1 = {3i+2 : i∈ [0,r−1]} or in case of 4×4 S-boxes

Ah+1 = {4i : i ∈ [0,r− 1]}, Bh = {4i+ 1 : i ∈ [0,r− 1]}, Ch−1 = {4i+ 2 : i ∈ [0,r− 1]}
and Dh−2 = {4i+ 3 : i ∈ [0,r− 1]}. In the case when the sets Ah+1, Bh and Ch−1 are

not balanced, we select the excess elements to be far from each other. We construct σ

such that Ah+1 is mapped to Ah. Bh is mapped to Bh−1. Ch−1 is mapped to Ch−2. Ah is

mapped to Ah−1. ABh−1 is mapped to ABh−2. ABCh−2 is mapped to ABCh−3. ABCh−3 is

mapped to ABCh−4. Etc. These constraints are depicted in Fig. 2. Note that

T = {Ah+1,Bh,Ch−1,Ah,ABh−1,ABCh−2,ABCh−3, . . . ,ABC1}

is a partition of {1, . . . ,k}, since Ah+1 ∪Bh ∪Ch−1 = ABC0. From the construction of

Hierarchical Permutation, we have that every i in Ai (i ≤ h+ 1) and Bi (i < h), Ci (i <
h− 1) has height i. The unbalanced-height structure makes it such that the output bits

of the S-box will meet the S-box layer every h+ 1, h, or h− 1 iterations. That is, two

bits of the same height are likely to have different heights after going through their

respective S-box. When the structure is balanced with a = b = c, we can take Ah+1 to

the list of the first output bits of S-boxes, Bh to the list of the second output bits of the

S-boxes, and Ch−1 to the list of the third output bits of the S-boxes. This way, two bits

going out from the same S-box cannot meet in the same S-box the next time since they

have different height. When the structure is unbalanced, it should be close to the same

situation. Exceptions to this rule are called “collisions”. In the case of ARMADILLO3-

A1/4 we have a = 9, b = 11, and c = 13 for r = 11, h = 4. This gives coverage 33
128 ≈

1
4 ,

and A5, B4, C3 as follows

5



– A5 = {0,3,6,9,12,18,21,24,27}
– B4 = {1,4,7,10,13,16,19,22,25,28,31}
– C3 = {2,5,8,11,14,17,20,23,26,29,32,15,30}

Additionally, we check that for σ′(x) = σh(x)(x) we have

⌊
σ′(15)

3

⌋

6=

⌊
σ′(17)

3

⌋

and

⌊
σ′(30)

3

⌋

6=

⌊
σ′(32)

3

⌋

.

A0 B0 C0

A5 B4 C3

❄

❄

❄

A4

❄
A3 B3

❄
A2 B2 C2

❄
A1 B1 C1

❄

Fig. 2. Hierarchy for Permutations with h = 4 and t = 3

We provide additional criteria to achieve the highest possible diffusion for a pair of

Hierarchical permutations.

Definition 1 (Distance) Let σ0, σ1 be a pair of the permutations on a set {1, . . . ,k}.
We say that they have a distance dℓ at level ℓ where

dℓ(σ0,σ1) = min
U,V∈{0,1}ℓ,U 6=V

|{ j : σU( j) 6= σV ( j)}|

For the selection of σ0 and σ1 we maximize d2(σ0,σ1). The high distance d1 is as-

sociated with small number of fixed points of permutation σ0σ−1
1 . Similarly, the high

distance d2 is associated with small number of fixed points of the permutation σU σ−1
V ,

for all U,V ∈ {0,1}2. Otherwise, for some values U and V of the control register, the

bit from position i is mapped to σU(i) = σV (i) = j for some j. This allows the attacker

to predict the behavior of the unknown permutation. In ARMADILLO3-A1/4, which is

defined in Section 4, we require d2(σ0,σ1) = 127, which means there is at most one

index i which is mapped to the same index j by the permutations σU and σV , where

U,V ∈ {0,1}2.

6



Definition 2 (Graph Ωσ0σ1,U ) Let U be a bitstring and r, t be integers (representing

the number and the types of S-boxes respectively). We define a multigraph Ωσ0σ1,U =
(V,E) for permutations σ0, σ1 and parameters r and t as follows:

V =

|U|⋃

i=0

V i V i =
{

vi, j : j ∈ {1, . . . ,k}
}

E =

|U|⋃

i=1

(
E i∪Si

)

E i =






(

vi−1, j , vi,σUi
( j)

)

, . . . ,
(

vi−1, j , vi,σUi
( j)

)

;
︸ ︷︷ ︸

t

rt < j ≤ k






Si =
((

vi−1, j∗t+a+1 , vi,σUi
( j∗t+b+1)

)

; j < r and a,b ∈ {0, . . . , t− 1}
)

where Ui denotes the ith bit of U.

The set E i is a multiset of edges between level i−1 and level i where every edge is taken

t times, and the set Si is a set of edges representing the S-boxes, i.e., for every S-box

we have a complete bipartite graph t× t. Therefore, the definition 2 gives a t-regular

multigraph (since some edges are repeated t times), i.e., Ωσ0σ1,U is an expander graph.

Combinatorically, the expander graphs are highly connected sparse graphs, probabilis-

tically expander graphs behave like random graphs. Let λ0 denote the second largest

eigenvalue of adjacency matrix of graph G. We now introduce a new criterion which

measures the randomness of the graph Ωσ0σ1,U . This criterion is based on the expander

graph theory, the reader is referred to [24] for details. We recall that an expander graph

is a τ-regular graph G with expansion factor D(G) > c for some constant c > 0 and

some τ ∈ N, where the expansion factor D(G) is given by the following formula. Let

δ(S) denote a set of edges neighboring of S, then

D(G) = min
0<|S|≤

|V |
2

|δ(S)|

|S|

Let σ0, and σ1 be permutations. We say that the graph Ωσ0σ1,U diffuses if for all v ∈V 0

and w ∈V |U| there exists an oriented path from v to w in graph Ωσ0σ1,U . We say that the

pair (σ0,σ1) has diffusion level difσ0,σ1
where

difσ0,σ1
= min{h : ∀U ∈ {0,1}h graph Ωσ0σ1,U diffuses }.

For the selection of σ0, σ1 we minimize difσ0,σ0
, difσ1,σ1

, and difσ0,σ1
.

Additionally, we verify the randomness of selected pair permutations. Let G = (V,E)
be a 4t-regular multigraph where V = V (Ωσ0σ0,0) and E = E(Ωσ0σ0,0)∪E(Ωσ1σ1,0)∪
E(Ω

σ−1
0 σ−1

0 ,0)∪E(Ω
σ−1

1 σ−1
1 ,0). We require the second largest eigenvalue λ0 of adjacency

matrix of multigraph G to be small. According to the Expander mixing lemma, we have

∣
∣
∣
∣
E(S,T )−

d|S||T |

n

∣
∣
∣
∣
≤ λ0

√

|S||T |.

7



This criterion helps us to select pair of permutations which minimizes difσ0,σ1
, where

E(S,T ) denotes the number of edges between S and T , and d is the degree of each

vertex (in our case 4t), and n is the total number of vertices (in our case 2k). It allows

to quantify the diffusion coming from the the data dependent permutation layer, as the

high number of edges means the higher diffusion. The Expander mixing lemma gives

an estimate, on how far we are from an optimum (Ωσ0σ1,U behaving like a random d-

regular graph). We refer the reader to [3] for further analysis of ARMADILLO family

based on expander graphs.

3 The Security Analysis of ARMADILLO3 function

3.1 Differential and Linear Cryptanalysis

The differential and linear cryptanalysis is complicated by the fact, that the attacker

does not know the sequence Y , i.e., the sequence in which permutations σ0 and σ1

are selected. In the differential cryptanalysis, the attacker looks for differentials which

propagate with a high probability through the cipher. Since the permutation Y is not

fixed while it varies according to the input X and the input H, the input Y is hard to pre-

dict, i.e., it is hard for an attacker to find a good differential path and mount differential

cryptanalysis. Similarly, the linear relations between input and output of ARMADILLO3-

A1/4 depend on the value Y which is unpredictable, and therefore obtaining a good

linear characteristic is hard. Moreover, the S-boxes are selected to provide good secu-

rity guarantees against both differential and linear cryptanalysis, therefore even if the

value Y is known to the attacker, the differential/linear cryptanalysis should be impos-

sible. From LAT, resp. DDT we can see that any linear characteristic resp. differential

have probability at most 1
4 . Therefore, any differential/linear characteristic over (h+1)

rounds will have a probability at most 1
4

from the construction of the S-box. Conse-

quently, any (h+ 1) · g round differential characteristic will have probability 2−2g and

any (h+ 1) ·g round linear characteristic will have a correlation of at most 2−2g. In the

case of ARMADILLO3-A1/4, we have k = 128, and h = 4. Therefore, the best differen-

tial/linear characteristic has probability probability at most 2−2 128
5 ≈ 2−51. The security

margin is obtained from the fact that the attacker have to know the values in the control

register to be able to use such differential/linear characteristics.

3.2 High Order Differentials and Algebraic Attacks

The number of S-boxes and the structure of the selected permutations ensure that the

degree of underlying ANF equations is close to maximum and the data-dependency of

the design ensures that these equations do not have any simple structural properties.

3.3 Statistical Saturation Attacks

The statistical saturation attacks were introduced in [6] against PRESENT [5]. Such

attack is based on low diffusion trails in the linear layer of PRESENT. However, as the

low diffusion trails are not constant and the permutations are selected in such a way that

8



the distance of σ0, σ1 and their compositions σ0σ0, σ0σ1, σ1σ0, and σ1σ1 are maximal,

the low diffusion trace changes substantially for different sequences Y . As the value Y

depends both on the secret key C and the challenge U , and since Y = P(X,H‖X), we

expect that it would be difficult for an attacker to control the low diffusion paths and to

utilize them at the same time.

3.4 The Internal Collision Attack.

The attacker can try to force an internal collision. The internal collision can appear

during the computation, since it is possible to find a pair (Y , Y ′) such that Yσ0
=Y ′σ1

. Let

consider a single step of ARMADILLO3, i.e., P(p‖b,Z) = P(p,S(Zσb
)) and let consider

how can we obtain an internal collision S(Zσb
) = S(Z′σb′

). We need to have Z′ = Z
σ−1

b σb′

as the substitution layer is bijective. This means that either Z =Z′ for b= b′ or we have a

prescribed relation between Z and Z′. This allows the attacker to force the value Y (from

the preprocessing phase) to be the same for different inputs U and U ′. However, the

attacker has then no control over the propagation of the difference in the computation

ARMADILLO3(H‖X) and ARMADILLO3(H‖X′).

3.4.1 Invariant States. The relation Z′ = Z
σ−1

b σb′
also allows the attacker to find

invariant internal state, i.e, a state W such that Wσ0
=Wσ1

. Therefore, the invariant state

has to follow an equation W = W
σ−1

b σb′
which means that bits of W are constant for

each cycle of permutation σ0
−1σ1. Therefore, selecting σ0 and σ1 so that σ0

−1σ1 has

long cycles is a good protection against these types of attacks. We note that a cycle of

permutation σ0
−1σ1 is a subset of the set A, B or C. Therefore, we cannot obtain a pair

of permutations, such that σ0
−1σ1 has less than h+ 1 cycles. Moreover, as the S-boxes

takes input/output bits from different cycles and changes the parity and therefore if Z′i =
Zi

σ−1
b

σb′
=⇒ Z′i+1 6= Zi+1

σ−1
b σb′

which means there is no invariant state in ARMADILLO3.

4 ARMADILLO3-A1/4

This section gives a concrete proposal of ARMADILLO3-A1/4 with k = 128 t = 3 and

r = 11 and “coverage rate”≈ 1
4
. This instance has only 11 3×3 S-boxes, which makes it

an interesting design for study by cryptographic community. We give a description of S-

boxes and the pair of permutations. We argue about the security of ARMADILLO3 based

on the properties of Hierarchical Permutations and the low second largest eigenvalue of

the selected pair of permutations.

4.1 The S-box layer of ARMADILLO3

The function S is defined as follows:

S(z1‖z2‖z3‖ . . .‖z31‖z32‖z33‖ . . .‖z128) = s(z1,z2,z3)‖ . . .‖s(z31,z32,z33)‖z34‖ . . .‖z128

The reader should notice that the indices covered by S-boxes correspond to the sets A0,

B0, and C0 of the Hierarchical Permutation.

9



The proposed instance of ARMADILLO3 has 3× 3 S-boxes. The S-box satisfies the

following equations. For an input (x0,x1,x2) and output (y0,y1,y2) = S(x0,x1,x2). We

have 





y0 = x0 + x1 + x2 + x0 ∗ x1 + 1

y1 = x0 + x1 + x0 ∗ x2 + 1

y2 = x0 + x1 ∗ x2 + 1

The permutation defined by the S-box expressed in decimal is a non-linear cycle:

(0 7 5 3 2 4 6 1). Thus, with 3 AND, 6 XOR and 2 NOT we can implement a single

ARMADILLO S-box in hardware.

4.2 The Permutation Pair

For a selection of a good pair of permutations, we create a pool of Hierarchical Permu-

tations with low diffusion difσ and a small number of long cycles. Afterwards we select

a pair which achieves a full diffusion in 25 rounds and the second largest eigenvalue

of graph Ωσ0σ1,U (Def. 2) is λ0 = 9.36. The permutation σ0 is given in Table 5 and the

permutation σ1 is given in Table 6.

4.3 Test Vectors and Implementation

We give a test vector for the ARMADILLO3-A1/4 with the S-boxes above and the per-
mutation pair σ0 in Table 5 and σ1 in Table 6.

ARMADILLO3-A1/4(0k) = 0xF89FCBAB 0x47D36AF6 0xDC51602D 0x31C3EEA1

ARMADILLO3-A1/4(1k) = 0x7C7A0E1F 0xBA9214DF 0x5FC3CD65 0x374EB994

The synthesis results at 1MHz with typical 0.35µm library and 2.2V voltage supply can

be found in Table 2. We give the details for several instances with “coverage” 1
4
. We give

the figures for several variants of ARMADILLO3 depending on the size of internal state,

see Table 1 for details on the variants with coverage “ 1
4
”. Concrete proposals for variants

ARMADILLO3-B1/4, ARMADILLO3-C1/4, ARMADILLO3-D1/4, and ARMADILLO3-E1/4

are omitted due to the lack of space.

5 Conclusion

We introduced a new hardware oriented class of cryptographic primitives ARMADILLO3.

Our design of ARMADILLO3 is based on data-dependent permutations and a reduced

size substitution layer. To meet the criteria for good confusion and diffusion layers, we

introduce the concept of Hierarchical Permutations. Such permutations give guarantees,

that the diffusion is fast despite the reduced substitution layer. The applications for AR-

MADILLO3 include MACs, hashing and PRNG. We propose an instance ARMADILLO3-

A1/4 to encourage the study of ARMADILLO3. The ARMADILLO3-A1/4 consists of a

pair of carefully selected Hierarchical Permutations and 11 3× 3 S-boxes.

10



Table 1. ARMADILLO3 variants with “coverage” 1
4
.

version k c m r t

ARMADILLO3-A1/4 128 80 48 11 3

ARMADILLO3-B1/4 192 128 64 16 3

ARMADILLO3-C1/4 240 160 80 20 3

ARMADILLO3-D1/4 288 192 96 24 3

ARMADILLO3-E1/4 384 256 128 32 3

Table 2. Implementation results with throughput at 1MHz, using 0.35µm.

Algorithm Block Key Area Time Cell power

(bits) (bits) (GE) (cycles/block) (mW)

ARMADILLO3-A1/4 48 80 4048 176 60

ARMADILLO3-B1/4 64 128 6065 256 89

ARMADILLO3-C1/4 80 160 7576 320 110

ARMADILLO3-D1/4 96 192 9133 384 134

ARMADILLO3-E1/4 128 256 12239 512 177

References

1. Mohamed Ahmed Abdelraheem, Céline Blondeau, Maria Naya-Plasencia, Marion Videau,

and Erik Zenner. Cryptanalysis of ARMADILLO2. In The 17th Annual International Con-

ference on the Theory and Application of Cryptology and Information Security, ASIACRYPT

2011, Séoul, Korea, Republic Of, 2011.

2. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Marı́a Naya-Plasencia. A

lightweight hash QUARK. In Stefan Mangard and François-Xavier Standaert, editors, Cryp-

tographic Hardware and Embedded Systems, CHES 2010, volume 6225 of Lecture Notes in

Computer Science, chapter 1, pages 1–15. Springer Berlin / Heidelberg, Berlin, Heidelberg,

2011.

3. Stéphane Badel, Nilay Daǧtekin, Jorge Nakahara, Khaled Ouafi, Nicolas Reffé, Pouyan

Sepehrdad, Petr Sušil, and Serge Vaudenay. ARMADILLO: A Multi-purpose Cryptographic

Primitive Dedicated to Hardware. In Stefan Mangard and François-Xavier Standaert, edi-

tors, Cryptographic Hardware and Embedded Systems, CHES 2010, volume 6225 of Lecture

Notes in Computer Science, chapter 27, pages 398–412. Springer Berlin / Heidelberg, Berlin,

Heidelberg, 2011.

4. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the indifferen-

tiability of the sponge construction. In EUROCRYPT’08: Proceedings of the theory and

applications of cryptographic techniques 27th annual international conference on Advances

in cryptology, pages 181–197, Berlin, Heidelberg, 2008. Springer-Verlag.

5. Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matt Robshaw, and

Yannick Seurin. Hash Functions and RFID Tags: Mind the Gap. In Elisabeth Oswald and

Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Systems CHES 2008, vol-

ume 5154 of Lecture Notes in Computer Science, chapter 18, pages 283–299. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008.

11



Table 3. Implementation comparison for hash functions with throughput at 100 kHz.

Algorithm Digest Block Area Time Throughput Logic FOM

(bits) (bits) (GE) (cycles/block) (kb/s) (µm) (nanobit/cycle.GE2)

ARMADILLO2-A 80 48 4030 44 109 0.18 67.17

PHOTON [13] 80 20 1168 132 775 0.18 59.27

ARMADILLO3-A1/4 80 48 4302 44 109 0.35 58.95

ARMADILLO2-A 80 48 2923 176 27 0.18 31.92

ARMADILLO3-A1/4 80 48 2991 176 27 0.35 30.49

PHOTON [13] 80 20 865 708 144 0.18 20.12

KECCAK-f[400][16] 128 128 5090 32 200 0.18 110.41

H-PRESENT-128[5] 128 128 4256 32 200 0.18 110.41

ARMADILLO2-B 128 64 6025 64 1000 0.18 27.55

ARMADILLO3-B1/4 128 64 6409 64 1000 0.35 24.34

PHOTON [13] 128 16 1708 156 422 0.18 15.06

ARMADILLO2-B 128 64 4353 256 250 0.18 13.19

ARMADILLO3-B1/4 128 64 4449 256 250 0.35 12.62

MD5 [12] 128 512 8400 612 83.66 0.13 11.86

U QUARK[2] 136 8 2392 68 476 0.18 8.51

PHOTON [13] 128 16 1122 996 66 0.18 5.48

U QUARK[2] 136 8 1379 544 87 0.18 3.20

ARMADILLO2-C 160 80 7492 80 100 0.18 17.81

PHOTON [13] 160 36 2117 180 731 0.18 17.01

ARMADILLO3-C1/4 160 80 7972 80 100 0.35 15.72

ARMADILLO2-C 160 80 5406 320 250 0.18 8.55

ARMADILLO3-C1/4 160 80 5526 320 250 0.35 8.18

D QUARK[2] 176 16 2819 88 616 0.18 8.08

PHOTON [13] 160 36 1396 1332 98 0.18 5.28

SHA-1 [12] 160 512 8120 1274 40.18 0.35 6.10

D QUARK[2] 176 16 1702 704 76 0.18 2.77

ARMADILLO2-D 192 96 8999 96 100 0.18 12.35

ARMADILLO3-D1/4 192 96 9575 96 100 0.35 10.90

C-PRESENT-192[5] 192 192 8048 108 59.26 0.18 9.15

ARMADILLO2-D 192 96 6554 384 25 0.18 5.82

ARMADILLO3-D1/4 192 96 6698 384 25 0.35 5.37

MAME [26] 256 256 8100 96 266.67 0.18 40.64

ARMADILLO2-E 256 128 11914 128 100 0.18 7.05

ARMADILLO3-E1/4 256 128 12682 128 100 0.35 6.22

SHA-256 [12] 256 512 10868 1128 45.39 0.35 3.84

ARMADILLO2-E 256 128 8653 512 25 0.18 3.34

ARMADILLO3-E1/4 256 128 8845 512 25 0.35 3.19

PHOTON [13] 256 32 4362 156 650 0.18 2.94

PHOTON [13] 256 32 2177 996 1034 0.18 1.85

12



Table 4. Implementation comparison for encryption with throughput at 100 kHz.

Algorithm Key Block Area Time Throughput Logic FOM

(bits) (bits) (GE) (cycles/block) (kb/s) (µm) (nanobit/cycle.GE2)

PRESENT-80 [5] 80 64 1570 32 200 0.18 811.39

Grain [14] 80 1 1294 1 100 0.13 597.22

KTANTAN64 [8] 80 64 927 128 50 0.13 581.85

KATAN64 [8] 80 64 1269 85 75 0.13 467.56

ARMADILLO2-A 80 128 4030 44 291 0.18 179.12

ARMADILLO3-A1/4 80 128 4302 44 291 0.35 157.19

Trivium [9] 80 1 2599 1 100 0.13 148.04

PRESENT-80 [5] 80 64 1075 563 11 0.18 98.37

ARMADILLO2-A 80 128 2923 176 73 0.18 85.12

ARMADILLO3-A1/4 80 128 2991 176 73 0.35 81.30

PRESENT-128 [5] 128 64 1886 32 200 0.18 562.27

HIGHT [15] 128 64 3048 34 189 0.25 202.61

TEA [25] 128 64 2355 64 100 0.18 180.31

ARMADILLO2-B 128 192 6025 64 300 0.18 82.64

ARMADILLO3-B1/4 128 192 6409 64 300 0.35 73.03

ARMADILLO2-B 128 192 4353 256 75 0.18 39.58

ARMADILLO3-B1/4 128 192 4449 256 75 0.35 37.89

AES-128 [11] 128 128 3400 1032 12 0.35 10.73

6. B. Collard and F. X. Standaert. A Statistical Saturation Attack against the Block Cipher

PRESENT. In Proceedings of the The Cryptographers’ Track at the RSA Conference 2009

on Topics in Cryptology, CT-RSA ’09, pages 195–210, Berlin, Heidelberg, 2009. Springer-

Verlag.

7. Ivan Damgaard. A Design Principle for Hash Functions. In Proceedings of the 9th Annual

International Cryptology Conference on Advances in Cryptology, CRYPTO ’89, pages 416–

427, London, UK, UK, 1990. Springer-Verlag.

8. Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN and KTANTAN

A Family of Small and Efficient Hardware-Oriented Block Ciphers. In Christophe Clavier

and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, vol-

ume 5747, chapter 20, pages 272–288. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

9. Christophe De Cannière and Bart Preneel. Trivium - A Stream Cipher Construction Inspired

by Block Cipher Design Principles. eSTREAM, ECRYPT Stream Cipher, 2005.

10. Donald E. Eastlake and Paul E. Jones. US Secure Hash Algorithm 1 (SHA1).

http://www.ietf.org/rfc/rfc3174.txt?number=3174.

11. Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong authentication for

RFID systems using the AES algorithm. In Cryptographic Hardware and Embedded Systems

- CHES 2004, pages 357–370. 2004.

12. Martin Feldhofer and Christian Rechberger. A Case Against Currently Used Hash Functions

in RFID Protocols. In Robert Meersman, Zahir Tari, and Pilar Herrero, editors, On the

Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, volume 4277 of Lecture

Notes in Computer Science, chapter 61, pages 372–381. Springer Berlin / Heidelberg, Berlin,

Heidelberg, 2006.

13



13. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of Lightweight Hash

Functions. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,

volume 6841, page 219, 2011.

14. Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The Grain family

of stream ciphers. In Matthew Robshaw and Olivier Billet, editors, New Stream Cipher

Designs, volume 4986 of Lecture Notes in Computer Science, chapter 14, pages 179–190.

Springer Berlin / Heidelberg, Berlin, Heidelberg, 2008.

15. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok Koo,

Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun Kim, Jongsung Kim,

and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for Low-Resource Device. In

Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Embedded Systems

- CHES 2006, volume 4249 of Lecture Notes in Computer Science, chapter 4, pages 46–59.

Springer Berlin / Heidelberg, Berlin, Heidelberg, 2006.

16. Elif Kavun and Tolga Yalcin. A Lightweight Implementation of Keccak Hash Function for

Radio-Frequency Identification Applications Radio Frequency Identification: Security and

Privacy Issues. volume 6370 of Lecture Notes in Computer Science, chapter 20, pages 258–

269. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010.

17. Lars Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Robshaw. PRINTci-

pher: a block cipher for IC-printing. In Proceedings of the 12th international conference

on Cryptographic hardware and embedded systems, CHES’10, pages 16–32, Berlin, Heidel-

berg, 2010. Springer-Verlag.

18. Ralph C. Merkle. A Fast Software One-Way Hash Function. J. Cryptology, 3(1):43–58,

1990.

19. Marı́a Naya-Plasencia and Thomas Peyrin. Practical cryptanalysis of ARMADILLO2. In

FSE, pages 146–162, 2012.

20. Khaled Ouafi and Serge Vaudenay. Pathchecker: An RFID application for tracing products

in Supply-chains. In Lejla Batina, editor, Proceedings of RFIDSec 2009, 2009.

21. Federal Information Processing Standards Publications. Advanced Encryption Standard.

Technical Report FIPS PUB 197, National Institute of Standards and Technology, November

2001.

22. Pouyan Sepehrdad, Petr Sušil, and Serge Vaudenay. Fast Key Recovery Attack on AR-

MADILLO1 and Variants. In CARDIS 2011, Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, Berlin, Heidelberg, 2011.

23. Adi Shamir. SQUASH - a new MAC with provable security properties for highly constrained

devices such as RFID tags. In Kaisa Nyberg, editor, Fast Software Encryption, volume

5086 of Lecture Notes in Computer Science, chapter 9, pages 144–157. Springer Berlin /

Heidelberg, Berlin, Heidelberg, 2008.

24. Nathan L. Shlomo Hoory and Avi Wigderson. Expander graphs and their applications. Bul-

letin of the AMS, 43(4):439–561, 2006.

25. David Wheeler and Roger Needham. TEA, a Tiny Encryption Algorithm., 1995.

26. Hirotaka Yoshida, Dai Watanabe, Katsuyuki Okeya, Jun Kitahara, Hongjun Wu, Özgül

Küçük, and Bart Preneel. MAME: A Compression Function with Reduced Hardware Re-

quirements. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware

and Embedded Systems - CHES 2007, volume 4727 of Lecture Notes in Computer Science,

chapter 11, pages 148–165. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2007.

14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
33 61 92 34 52 86 36 54 89 41 59 93 39 53 84 94

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
55 88 35 57 90 37 58 85 38 56 82 40 51 91 83 60

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
87 50 45 43 49 42 47 44 48 46 78 69 70 73 79 63

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
72 75 67 81 71 64 76 66 77 62 65 80 68 74 118 119

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

100 122 127 107 108 117 109 121 111 105 110 98 97 96 120 103

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
99 115 116 123 126 124 114 113 125 95 106 104 101 102 112 0

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
24 29 2 13 6 25 16 10 32 21 15 18 1 27 7 11

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
17 22 19 31 9 30 4 8 12 28 5 20 26 3 23 14

Table 5. Permutation σ0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
34 53 88 37 61 82 35 51 86 36 58 85 41 55 94 90

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
57 87 40 52 89 38 59 83 33 60 84 39 56 92 93 54

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
91 46 49 42 47 48 44 43 50 45 64 65 67 80 75 76

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
66 71 68 63 73 70 72 74 79 77 62 78 69 81 104 116

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

113 106 126 105 95 119 127 124 100 122 117 114 112 123 96 102

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

125 120 103 110 98 99 97 111 121 115 109 118 108 101 107 25

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 18 22 21 12 16 23 4 26 32 11 0 7 30 17 29

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
13 15 8 24 6 20 9 14 19 31 1 3 10 27 28 2

Table 6. Permutation σ1

15


