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Abstract. We propose a practice-oriented scheme for protecting RAM
access pattern. We first consider an instance which relies on the use of
a secure (trusted) hardware buffer; it achieves both security and per-
formance levels acceptable in practice by adapting ideas from oblivious
RAM mechanisms, yet without the expensive (re-)shuffling of buffers.
Another instance requires no special hardware, but as a result leads to a
higher, yet practical overhead. One of the main features of the proposal
is to maintain the history of memory access to help hiding the access
pattern. We claim that under reasonable assumptions, the first scheme
with trusted memory is secure with overhead of only 6x, as is the second
scheme with overhead of (2m+2¢, +2)x where m and ¢}, are respectively
the size of the buffer and history. We note that although the proposal is
particularly focused on the software execution protection environment,
its security may well be appropriate for most uses in the remote stor-
age environment, to prevent access pattern leakage of cloud storage with
much lower performance overhead than existing solutions.
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1 Introduction

The problem of preventing leakage of information arising from both running
software on untrusted systems, as well as storing data in remote untrusted servers
has attracted much attention. While encryption can be used to protect data
confidentiality, the problem of protecting access pattern with manageable and
practical overhead is harder to address.

In the software execution environment, one can identify two main motiva-
tions for protecting memory access pattern privacy: the traditional application
is to protect Intellectual Property, and prevent software piracy. More recently, it
has been shown how access pattern leakage can be used to attack certain imple-
mentations of cryptographic algorithms (in the so-called cache attacks [15]). In
the remote storage environment, one would like to protect access pattern from



a curious but not malicious server, which may benefit from gaining information
about the client’s pattern of access of stored data.

The traditional solution for memory access pattern protection is known as
Oblivious RAM. Tt was first proposed by Goldreich [5], and later extended by
Goldreich and Ostrovsky [6]. The main construction is based on the hierar-
chical solution, in which the data structure is organised in levels consisting of
hash-tables (using secret hash functions known by the client only), and requires
periodic expensive oblivious re-shuffling of data.

In the past few years, many improvements have been proposed, for exam-
ple [1,16,4,9,17,12]. Several schemes consider improvements for the application
to cloud computing [3,19,7,8,10,11, 13, 20]. Improvements typically arise from
the use of different data structures and hash function schemes, more efficient
sorting algorithms (for the oblivious shuffling step), and the use of secure local
(client) memory. Besides the hierarchical solution, Goldreich and Ostrovsky [6]
also proposed the square root construction, which uses secret random permu-
tations when storing data. Boneh et al. [2] have recently presented a hybrid
algorithm between the square-root and hierarchical algorithms, and proposed a
new notion of oblivious storage.

Despite much recent progress, where both the asymptotic efficiency as well as
the constant terms of oblivious RAM solutions have been improved (making it
particularly attractive for remote storage access pattern protection), current so-
lutions remain inefficient for software execution protection, i.e. to prevent leakage
of relatively limited-in-size memory access pattern. In these cases, the constant
terms involved in the computational complexity make the overhead unaccept-
ably high. Yet an efficient and secure mechanism for access pattern protection is
a particularly desirable feature in this environment. For instance, an emerging
issue is the rapid increase of malicious software targeting smartphones. Most ex-
isting protection schemes, originally designed for PCs, are not suitable for smart-
phones due to several limitations, such as the computational power and available
storage size. In these environments, solutions range from use of obfuscation to
hardware-based access pattern protection mechanisms. For instance, Zhuang et
al. [21] proposed a practical, hardware-assisted scheme for embedded processors,
with low computational overhead. Their control flow obfuscation scheme for em-
bedded processors employs a small secure hardware obfuscator to hide program
recurrence. Their proposal however trades security for low overhead (and the
cost of the trusted hardware buffer), and in some situations an adversary with
access to the device can retrieve information about memory access.

In this paper, we propose a practice-oriented scheme for protecting RAM
access pattern. We first consider an instance which, similar to the proposal by
Zhuang et al., also relies on the use of a secure (trusted) hardware buffer. How-
ever it achieves higher security by adapting ideas from Goldreich and Ostro-
vsky’s square root solution, yet without the expensive (re-)shuffling of buffers.
By applying this scheme, we can construct a secure platform that is suitable for
executing software that deals with user private information. A potential appli-
cation is to secure program execution in smartphones: these devices typically



contain sensitive user information and are increasingly under severe threat from
malware. Most smartphones have a SIM card, which is generally considered as
a secure area, and deployment and security of our scheme could rely on the SIM
card. Another instance requires no special hardware, but as a result leads to a
higher, yet practical overhead. This scheme can offer the same level of security
without any special hardware. Many applications have their security relying on
IC cards or other trusted hardware. One of the roles of trusted hardware is of-
fering a secure computation, which can be realised with our proposal. Another
role is a secure storage for a secret information, which is yet to be realised.

The main feature of our proposal is to maintain the history of memory access,
which together with the access of dummy data, helps one to hide data access
pattern. The security of the schemes depends on the size of the buffer (as cache
or in RAM) and how the history is used. We claim that under reasonable as-
sumptions and by selecting appropriate parameters, the schemes achieve both
security and performance levels acceptable in practice. We note that although
the proposal is particularly focused on the software execution protection envi-
ronment (i.e. to prevent RAM access pattern leakage), its security may well be
appropriate for most uses in the remote storage environment, to prevent access
pattern leakage of cloud storage with much lower performance overhead than
existing solutions.

2 Access Pattern Protection Problem

We can model the problem of access pattern protection as follows. We consider
a client, with potentially small secure memory, and a server providing large
insecure storage. This storage consists of several data blocks (for simplicity,
all of the same size). In the software execution environment, we can think of
the CPU as the client, and RAM as the server, where a malicious entity (e.g.
malware) has access to RAM and the memory bus used in the communication
between the CPU and memory.

The client accesses data by making requests to the server to either retrieve
the contents of a particular data block at location ¢ or by writing x into a data
block at location j. We denote these operations by read(i) and write(j, z),
respectively. We consider the security goals as: to protect the confidentiality® of
data, as well as hide the client’s access pattern to the stored data blocks from a
computationally bounded adversary, which can access the data storage and the
communication channel between the client and the server.

We can address the first goal by using a semantically secure probabilistic
encryption scheme, such that two encryptions of the same data block will look
indistinguishable to a computationally bounded adversary. The use of encryption
adds a constant overhead to the system. For the remaining of this work, we will

3 In environments where there is a requirement, we will also want to protect data
integrity; this can be done by adding a MAC or by using an authenticated encryption
algorithm.



assume that the data is stored encrypted; it is decrypted whenever it is read
from memory, and re-encrypted whenever it is written into memory.

For the second goal, we would like that a particular sequence of operations
in the stored data does not substantially leak any information, other than how
many data blocks were accessed. To formalise it, we use the definition in [16] for
a secure oblivious RAM system.

Definition 1 ([16]). The input y of the client is a sequence of data blocks,
denoted by ((v1,21),...,(Un,xn)) and a corresponding sequence of operations,
denoted by (op1,...,0pm), where each operation is either a read operation, de-
noted read(v), which retrieves the data of the block indexed by v, or a write
operation, denoted write(v,x), which sets the value of block v to be equal to x.

The access pattern A(y) is the sequence of accesses to the remote storage
system. It contains both the indices accessed in the system and the data blocks
read or written. An oblivious RAM system is considered secure if for any two
inputs y and y' of the client, of equal length, the access patterns A(y) and A(y')
are computationally indistinguishable for anyone but the client.

The typical, straightforward method for preventing an adversary from dis-
tinguishing between the read and write operations is to always perform both
operations in every access. As a result of using this method, an access pattern
A(y) (for the purpose of indistinguishability) can be thought as simply as a
sequence of indices ¢ (corresponding to the data blocks accessed). The trivial
solution to the access pattern protection problem consists of accessing all data
blocks on the memory for each query. Another trivial solution is to use a secure
client hardware. Both schemes are however too costly in practice.

In addition, data blocks are typically organised in memory based on a se-
cret permutation or hash function in an oblivious way. This is the most expen-
sive component of the schemes, and is the main responsible for the (amortised)
computational overhead. Our proposal does not employ oblivious re-shuffling of
memory; while this will affect the security provided by the scheme, we claim that
under reasonable assumptions, the proposals achieve both security and perfor-
mance levels acceptable in practice.

3 Related Work

We briefly introduce below some of the main research results related to our work.

3.1 Oblivious RAM

Oblivious RAM is the traditional solution for memory access pattern protection,
having been first proposed by Goldreich [5], and later extended by Goldreich
and Ostrovsky [6]. The main construction is based on the hierarchical solution,
in which the data structure is organised in levels consisting of hash-tables (using
secret hash functions known by the client only), and requires frequent oblivious
re-shuffling of data. Data is scanned by visiting each level, after which the item



found is written in the top level. Levels eventually overflow with data, leading
to their move downwards. This process requires the re-shuffling of data, which is
done obliviously. This is the most complex component of the construction, and
is the main factor in its (amortised) complexity overhead. The original scheme
requires O(nlogn) in storage, and has computation overhead of O((logn)?) per
query (using a particularly impractical sorting algorithm, or O((logn)?) with
more reasonable constant in practice).

Since the original proposal of hierarchical solution, several improved schemes
have been proposed. Pinkas and Reinman [16] improved the performance of
oblivious RAM using Cuckoo hashing and a new oblivious sorting algorithm.
However, Kushilevitz et al. [12] pointed out a security flaw of the scheme pre-
sented in [16]. They also proposed a new scheme with O((logn)?) worst-case
overhead. Goodrich and Mitzenmacher [8] achieved O((logn)?) amortised cost
with O(1) client-side storage. Their scheme could achieve higher performance of
O(logn) by using O(n®) client storage where 0 < a < 1. Stefanov et al. [18] pro-
posed a scheme with an amortised overhead of (20-35)x by partitioning a bigger
oblivious RAM into smaller oblivious RAMs. An efficient worst-case overhead
scheme was proposed by Goodrich et al. [9]. This scheme also requires O(n")
client storage, where 7 is a small constant, and achieves O(logn) access overhead
and O(n) storage overhead.

Goldreich [5, 6] also proposed the square root construction, which uses secret
random permutations when storing data. The solution requires O(n + /n) in
storage, and has computation overhead of O(y/nlogn) per query. See appendix
of the extended version of [16] for an overview, or refer to the original paper
for a detailed description. We note that our proposal borrows ideas from the
square-root solution.

3.2 Hardware-assisted Control Flow Obfuscation

Oblivious RAM constructions remain too expensive to be implemented on em-
bedded processors. In [21], Zhuang et al. proposed a practical, hardware-assisted
scheme for embedded processors, with low computational overhead. Their control
flow obfuscation scheme for embedded processors employs a small secure hard-
ware obfuscator (called shuffle buffer) to hide program recurrence. The shuffle
buffer is within the CPU trusted boundary, and an adversary is not able to
observe access pattern in the shuffle buffer. The first m blocks in memory are
moved to the shuffle buffer, which can hold m data blocks. When making a re-
quest for a data block, if the block is found in the shuffle buffer, access the block.
Otherwise fetch the block from memory and a random block in the shuffle buffer
is written back to memory. For more details, refer to [21].

This scheme however leaks information about access of data blocks. The
scheme accesses memory only when it is necessary (i.e. when the block is not in
the shuffle buffer), hence, one knows the exact block being accessed. Furthermore,
an access in memory to a data block which was previously swapped out from
the buffer indicates with high probability the existence of repeated access to a
particular data.



Despite the limitations of the proposal, it adds a very low overhead to the
program execution (besides the read/write and encryption/decryption overhead,
only an extra read/write operation due to cache misses). We will surmount this
limitation in our proposal.

4 Owur Scheme for Memory Access Pattern Protection

While oblivious RAM constructions can completely hide memory access pattern,
they are too expensive to be implemented on resource-constrained devices. In
this section, we describe our proposal for a practice-oriented memory access
pattern protection scheme. One of its main features is the inclusion of an extra
buffer used to maintain the history of memory access, to help hiding the access
pattern. We present below two instances: the first one uses a secure (trusted)
hardware buffer, as in [21]; however it achieves higher security by adapting ideas
from oblivious RAM mechanisms, yet without the expensive (re-)shuffling of
buffers. The second instance requires no special hardware, but as a result leads
to a higher, yet practical overhead.

4.1 Assumptions

We consider the problem of hiding the access pattern of memory with n data
blocks. Our scheme will assume that the client has access to an efficient pseudo-
random number generator (to make random choices of addresses), and a seman-
tically secure probabilistic encryption scheme. Data is always stored encrypted:
it is decrypted whenever it is read from memory, and re-encrypted whenever
it is written into memory. Furthermore, either a read or write operation will
always perform the two operations in every access, the difference is the value
being written in the write step. As a result of using this method, an access
pattern (for the purpose of indistinguishability) can be thought as simply as a
sequence of indices ¢ (corresponding to the data blocks accessed).

Our scheme will also require a way to generate a pseudo-random permuta-
tion, to map memory addresses. This can be achieved by using a deterministic
encryption algorithm £. This mapping will be described either by the function
&, with the output computed in each call, or explicitly described as a table look-
up (with input-output pairs). We note that the latter requires O(n) memory
within the client’s trusted boundary (as in [21]), which in some scenarios may
be impractical.

Perhaps the main challenge of access pattern protection schemes is to hide
the repeated access of data blocks. In general, when not deploying expensive
ORAM solutions, access pattern can typically be distinguishable by observing
a long series of accesses. Therefore, we define a relaxed, still practical, security
definition of access pattern protection, which we call d-length security. Assume
that during a certain sequence of data access, a particular block ‘a’ is accessed
twice by a program at t-th access and (¢ + d)-th access; we call this a §-distance
access of ‘a’. Informally, an access pattern protection scheme is J-length secure if



the probability that an adversary identifies repeated accesses in A(y) at distance
at most d is small.

Definition 2. We say that an access pattern protection scheme is d-length e-
secure if the probability that an adversary identifies any d-distance access in A(y)
18 at most € for every d <.

4.2 Set-up

On loading n data blocks to memory, our scheme will use £ to permute the
corresponding addresses. Dummy data will be typically added to the original
data, so that at initialisation we have kn data blocks being loaded to memory,
with £ > 1 a small constant. The constant k will be selected based on the typical
epoch length of the program and the availability of memory within the client’s
trusted boundary to describe the random permutation £. We discuss the use of
dummy data in more detail in Section 5.3.

Our scheme will partition memory into two regions: a (secure) buffer M and
an unsecured memory L, of sizes m and ¢, respectively, with m < £. It follows
that m+/¢ = kn. Furthermore, we will require a secure table H, called the history
table. The table H stores addresses of data blocks that have been moved from
the secure buffer M to the unsecured memory £, and has size ¢;. We denote
the address of a data block ‘a’ as i,. Typically, we may have H implemented
as part of M. In the case where we are able to store the permutation mapping
table explicitly,  can be implemented by adding a set bit into the table. Despite
these choices, in our discussions below we consider H as a separate table.

4.3 Instance 1: Construction with Secure Memory

The first instance of our scheme considers the buffer M being implemented
within the client’s trusted boundary (as in [21]). The table H is also stored
within this boundary. After loading data into memory, m data blocks are copied
into M; the table H starts empty®. On the first access to a data block ‘a’ (either
a read(a) or write(a,x)), we search for ‘a’ in M and access L twice: if ‘a’ is in
M, we replace two random elements (not ‘a’) from M with two random dummy
elements from £ and we access ‘a’; if ‘a’ is not in M, two random elements
from M are replaced by ‘a’ and one random dummy element from £ (and ‘a’ is
accessed). In both cases, the corresponding addresses of blocks being kicked out
from M are written in H. In subsequent calls, we proceed as follows:

1. if ‘@’ is in M, we replace two random elements (not ‘a’) from M by a
random element from £ and a random element from £ which had already
been accessed before (as recorded in the history buffer), and we access ‘a’.

4 although, before the program starts to run, the scheme can operate by accessing a
number of dummy data blocks to populate the history buffer.



Algorithm 1 Pseudocode of access pattern protection scheme
1: scan M for ‘@’
2: if ‘a’ € M then
3:  replace two random elements (not ‘a’) in M with two random blocks in £, one
of them is chosen from the history H and the other is randomly chosen from £
else
scan H for ‘4.’
if ‘4,” € H then
replace two random blocks in M with a random block in £ and ‘a’
else
replace two random blocks in M with ‘@’ and a random block whose address
is registered in H
10:  end if
11: end if
12: choose ¢}, elements from ¢;, + 2 to update history table H
13: access ‘a’

2. if ‘a’ is not in M, and its address is in the history table, we replace two
random elements from M by a random element from £ and ‘a’ (as recorded
in the history buffer). Note that H holds only addresses and data itself is
stored in L.

3. if ‘@’ is not in M, and its address is not in the history table either, we replace
two random elements from M by ‘a’ and a random element from £ which
had already been accessed before (as recorded in the history buffer).

Every time the data blocks are kicked out from M to L, data blocks are
written in £ taking their original position (as described by &), and addresses
of those blocks are registered in the history table H. As the program continues
to access data blocks, the table may eventually get full. When this is the case,
at each access we select at random ¢, elements among the ¢5, + 2 elements (the
current history elements and the two new ones). We have a pseudocode of our
scheme in Algorithm 1 and show an example in the appendix.

The Objective of the History Buffer. The goal of our scheme is to efficiently
protect the privacy of data access pattern. It is clear that if during a run of
the program, data blocks are only accessed once, then the use of a random
permutation alone will suffice to hide the access pattern. The case of relevance is
thus when a data block is accessed more than once. When it is accessed for the
first time, it is copied into M. If accessed again, and it is still in M, then access
is oblivious from an adversary; still we would like to hide the fact that the data
accessed was found in M. If it is no longer in M, then we would like to hide the
fact we are accessing it again from an adversary. Thus, if we consider the case
that a program keeps reading ‘a’ at different intervals, we have the following
three types of access to consider:

1. ‘a’e M;



2. ‘a’¢ M and ‘i, € H;
3. ‘a’¢ M and ‘i, ¢ H.

Note that case 3 is likely to occur when ‘a’ is accessed for the first time. As
discussed, the cases that require most attention are 2 and 3 when ‘a’ is accessed
again: since we do not perform an oblivious re-shuffling, the adversary would
notice that ‘a’ is being accessed again.

To address this, in our scheme, we first search ‘a’ in M and then, depending
on the cases described above, the access of memory is done as follows:

1’. access (r, p),
2. access (r, a),
3’. access (a, p),

where r is a random location in £ and p is a location recorded in the table H.

Note that we need to keep the contents in the history table secret: although
the adversary can record all blocks previously accessed, in practice we may not
be able to keep the addresses of all accessed blocks in the history table (since £y,
may be small). If we had the addresses in cleartext, one may note that in case 3’
above, although ‘a’ had being accessed before, its address was no longer in the
history buffer (for lack of space).

4.4 Instance 2: Construction without Secure Memory

We consider a second instance of our proposal, which does not require a secure
buffer. The buffer M and history table H are kept in the unsecured memory area,
as with £. In this case, access to M (and H) is made by reading and writing
every data block in the buffers (which requires decryption and encryption of
data). Thus, to find out whether ‘a’ is in M, we read/write all values; when
replacing data blocks in M, we again read/write all values. Except for this, the
access is made as described in Section 4.3. The security provided is the same,
but the computation overhead is obviously increased, and it is dependent of the
sizes of buffers M and H.

5 Security Analysis

We discuss the security of our scheme.

5.1 Access Pattern Hiding

Regarding recurrence, recall that in our scheme, we first search ‘a’ in M and
then, depending on the cases described in Section 4, the access of memory is as
follows:

1. ‘a’e M, and ‘a’ is accessed: access (r, p) in L;
2. ‘a’¢ M, ‘a’€ H, and ‘@’ is accessed: access (r, a) in L;



3. ‘a’¢ M, ‘a’¢ H, and ‘@’ is accessed: access (a, p) in L.

Assume that the program accesses ‘a’ at time ¢; we denote it by X; = a. We
have the following lemma.

Lemma 1. Assume that X; = a, and let m and £), denote the sizes of the M
and H, respectively. Then after 0 steps we have py; = Prla € M| > (%72)6 and

py = Prla € H] > (6512)5.

Proof. To compute Prla € M], note that the right-hand side of the expression
corresponds to the probability that an element remains in a set of size m after
¢ replacements of 2 elements at time, which is how the scheme manages the
buffer M. The inequality comes from the fact that even if removed after d < ¢
steps, ‘a’ may be re-inserted during the normal operation of the scheme. Showing
the second probability is similar (noting however that in the history buffer, the
scheme draws 2 elements among ¢;, + 2 elements). O

For the sake of simplicity, we will in the remaining of this paper assume equality
in the two expressions above. Furthermore, we will also assume that the two
events are independent (obviously the probability of ‘a’ being in H after § steps
will be influenced by whether/when ‘a’ leaves the buffer M; however we believe
this assumption is reasonable for typical values of m, £, and d — and substantially
simplifies our computations). The simple lemma below then follows.

Lemma 2. Consider the three cases for memory access discussed above, and
assume that Xy = Xyys = a. Then the probability that we have case 1 is pyyr, the
probability that we have case 2 is pr(1 — par), and the probability that we have
case 3is (1 —pp)(1 — parr).

Now assume that an adversary observes the scheme at time ¢ + ¢ in case 1,
i.e. we have a € M and access to (r,p) from £. Then following a conservative
estimate, we have Pr[X;s = a | case 1] < —L-. For case 2, we have a similar
upper bound: Pr[X;5 =a | case 2] < —L5. Case 3 is perhaps the one in which
an adversary can extract more information (since it is very likely that, unlike
the other two cases, the pair of elements (a,p) drawn from £ have already been
observed by the adversary). We will again adopt a conservative approach, and

have the upper-bound Pr[X;;s =a | case 3] <1/2.

Theorem 1. The proposed scheme is d-length e-secure access pattern protection
scheme, where

DM (1 —pm)per | (1 —pu)(1 —pr)
S22t o2y 2(m —2)

Proof. Let A be adversary who is able to observe an access sequence X; = a;,
for i = 1,..., N. Let us assume that X; = X;;s = a. We wish to compute the
probability Pr[X; = a, X;1s = a]. We assume that the first access to a is at time
t (the proof and figures can be slightly modified when this is not the case), and



that the accesses at time ¢ and ¢ + § are independent events (i.e. we assume no
knowledge of statistics of the original program being protected). Then we have
Pr[X; = a] <1/(m —2), and by lemmas and discussion above.

Pr[X; = a, Xty5 = a] = Pr[X; = a] - Pr[X¢4s = a)

1
< m(Pr[Xt_Hg =a|casel]-Pr[casel]
+ Pr[Xi45 = a | case 2 | - Pr[ case 2 |
+ Pr[X;y5 = a | case 3 |- Pr[ case 3 ])
< _pv (A —papn (L= pu)(d —pa)
~ (m—2)2 (m —2)2 2(m — 2) '

5.2 Parameters: Size of Secure Memory and History Table

The choice for sizes of the secure memory M and history table H have an
obvious influence in the security and efficiency/cost of the scheme: it follows
from Theorem 1 that large values for m and /¢, significantly decreases the chances
that an adversary can identify a repeated access to a particular memory block.
However large M and H negatively affect the performance of the scheme (as
well as increase its costs in the hardware-assisted version).

For instance, if we take the size of the shuffle buffer as 128 16-byte blocks (as
in [21]), and the same size for H (that is, 512 32-bit addresses), then for § = 20,
we have pyr ~ 0.73 and py ~ 0.92, and as a result € < 1.4 x 107%. The value
increases to 4.4 x 1074 if § = 50, and to 1.06 x 1073 if § = 100 In general, SIM
cards have a capacity of 64KB, which means we can allocate much more space,
say 1024 blocks and 4 x 1024 history addresses. In this case, we have py; ~ 0.82
and pg ~ 0.95, and as a result € < 0.5 x 107> for § = 100.

As discussed before, we note however that our scheme does not achieve strong
indistinguishability: As we use a static permutation £, addresses are fixed (after
the permutation), and this implies some leakage of information (an adversary
will, for instance, know when the sets of potentially accessed blocks are disjoint,
implying no recurrence). Overall, we believe that, a choice of parameters can be
made to achieve both security and performance levels acceptable in practice.

5.3 How much dummy data should we use?

Oblivious RAMs provide security by making sure that a data block is only
accessed once while it remains at the same address. When it is accessed again,
it will be allocated to a completely different address and the adversary will have
no information about the contents and whether/when it was accessed before.
Our scheme, on the other hand, tries to ensure the security in the circumstance
that the data block is accessed multiple times while in the same address.

If there are several dummy data blocks, that can be used as random elements
that the protection scheme can access. They will also prevent the adversary from



determining which blocks are actually accessed by the program. We can also
make dummy accesses to the actual data blocks when it is not accessed by the
program. When the program accesses a data block, the access pattern protection
scheme will access 2 blocks as the scheme always swaps 2 blocks between M and
L. If we add n dummy data blocks, the number of accesses to the actual data
and dummy data will be roughly the same. Guessing the access pattern correctly
becomes harder as n increases, and less dummy blocks will be required. While
we still need to confirm it experimentally, we expect that the required number
of dummy blocks will be at most 2n and the constant k will be 1 < k < 3.

6 Comparison

Our scheme requires secure memory for storing m data blocks. It also requires
storage for the history table of size ¢;,. When we read a data block, we first access
the secure memory to check whether the data block sought is in M. We then
move two data blocks into M and read the data block. We also need to access
and update the history table. Thus the total cost is 4 operations, plus the cost
associated with reading and writing the history table (which can be only two
extra accesses if H is within the secured boundary). Thus we have the overhead
of 7 operations. We discuss how to improve the overhead later this section. The
history can be potentially stored (encrypted) in the memory area £. When H is
not within the secured boundary, we have to read and update all blocks in the
table. Thus we have the overhead of 4 + 2¢;. Finally, if using dummy data, we
also have data storage overhead in £ depending on the constant k.

Our scheme can also be implemented without any special hardware. The
difference in this case is that we need to scan the entire buffer M twice, plus
the access to the history table and two swaps. We have therefore the cost of
2m + 20, + 2 operations. As we assume m is much smaller than n, our scheme
without a hardware is still more efficient than most of oblivious RAMs. According
to [18], practical overhead of oblivious RAMs are, in general, on the range of
thousands to hundred of thousands. When we choose m = ¢;, = 128, the overhead
is 514, which is less than half of that of oblivious RAMs. The scheme proposed
of [18] achieved the overhead of (20 — 35)x, which is faster than our second
scheme, still our scheme has the advantage in terms of storage size, that is, ours
requires less than 3n storage for n original data while the scheme in [18] requires
4dn + o(n).

Overall, the parameters m, ¢;, and k can be set to suitable values, to offer the
appropriate trade-off between security and implementation/computational costs.
While oblivious RAMs are too expensive especially for resource constrained de-
vices and Zhuang et al.’s scheme is not suitable scheme for this purpose, our
scheme can offer reasonable security for the access pattern protection problem
with constant computational overhead and practical storage.

Improvement of Performance. When we update the history table, addresses
of two data blocks are registered into the history table independently in the



Table 1. Comparison with Other Schemes

Pattern Leakage|Computational Overhead| Storage
Square root [6] No O(y/nlogn) O(n++/n)
Pinkas-Reinman [16] No O((logn)?) 8n
Stefanov et al. [18] No O(logn) 4n + o(n)
Goodrich-Mitzenmacher [8] No O(logn) 8n
Lu-Ostrovsky [14] No O(logn) O(n)
Kushilevitz et al. [12] No O((logn)?/loglogn) O(n)
Zhuang et al. [21] Yes 2 2n
Ours w/ Sec. Mem. see Theorem 1 6 <3n
Ours w/o Sec. Mem. see Theorem 1 2(m+4r + 1) <3n

original scheme. Assume that two addresses ‘i,” and ‘;” need to be registered,
then two random locations are selected and those locations are updated with
the new blocks. Therefore, the update requires two operations in each cycle.
The update can be done with only one operation by modifying the entry as
a bigger one i,4||ip, where || is concatenation. When choosing one data block
from the history table, one can first choose the concatenated block and then can
choose higher half or lower half of the block. As a result, we can reduce the cost
for updating the history table from 2 to 1 and the overall overhead is improved
to 6. Table 1 gives the comparison of the performance with other schemes.

7 Conclusion

In this paper, we proposed two new schemes for protecting memory access pat-
terns. The distinctive character of our scheme is that we do not re-shuffle the
order of the data blocks in memory. To protect the access pattern without re-
shuffling, we used a history of the accesses. We first considered an instance which
is similar to the proposal in [21], and also relies on the use of a secure (trusted)
hardware buffer; however it achieves higher security by adapting ideas from
Oblivious RAM mechanisms, without the expensive (re-)shuffling of buffers. An-
other instance requires no special hardware, but as a result leads to a higher, yet
practical overhead. We defined a new security notion called J-length e-security
and proved that the proposed two schemes are secure in this notion. We also
discussed the size of parameters, which are the size of secure memory, history ta-
ble and dummy data and compared the performance with existing schemes. We
claim that under reasonable assumptions, the schemes can achieve both security
and performance levels acceptable in practice.
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Appendix

‘We

present an example of the scheme in Figure 1. In this example, we have

m = 4 and ¢, = 6, then the program reads data in the order 5 - D — 8 — 5.

For simplicity, we will not be using dummy data (i.e. £ = 1) and we have a fixed
permutation.
[t]2]3]4]s[ef7]s[o]alBc]D[E]F]
xrenenon ) Gl Al B Ip[211]
Reading || | [ [ | [|[s]els[4]|[LTE]o]F] [alcfe] [s] [7]p[2]1]
solalel [ [ I|slslsoflalefole] [alcfe] [ [B[7]p] [1]
o [afs]s]s[ | [J[s][e[o[2]| [ [e[ofr]s[a]cfe]s]s] [7] [2]t]
s [ale[s[s[a[e]|[a]s[o[o]{«]efo]F] | [cfo]s[s]ef7] | [1]
s [2]e[s]s[s[e]f{a]s[ofe]|[4]eofr[s] Jef [s] [B[7] [2]1]
LILT TP [ Jflafefofrlsfafcfe]s]s][e]7[p]2]1]

Fig. 1. Our Scheme

All data in the memory £ is randomly permuted and M is filled with the 4
random blocks.

When the program tries to access 5, since it is not in M, blocks 5 and 2
are brought into M. Since we do not have any history yet, block 5 and a
random block is chosen. Two blocks (4 and B) in M are written back to £,
and their addresses are entered in the history.

. When the program accesses D, the block D is brought into M. The block

B is chosen from the history and also brought into M. Blocks 5 and 8 are
instead written back to £, and their addresses are entered in the history.
When the program accesses 8, since 8 is in the history, block A is randomly
chosen. Blocks 3 and B are written back to £, and their addresses are entered
in the history.

When the program accesses 5, since the address of 5 is in the history, the
block 6 is randomly chosen to be brought into the M. Blocks 2 and 8 are
written back to £. Now the history table is full, two addresses of random
blocks (in this example, 4 and 5) are replaced with those of 2 and 8.

All blocks in M are written back into L.



