Compact Implementation and Performance
Evaluation of Hash Functions in ATtiny Devices

Josep Balasch!, Baris Ege?, Thomas Eisenbarth®, Benoit Gérard*, Zheng
Gong®, Tim Giineysu®, Stefan Heyse®, Stéphanie Kerckhof*, Francois Koeune?,
Thomas Plos”, Thomas Péppelmann®, Francesco Regazzoni®, Francois-Xavier
Standaert?, Gilles Van Assche”, Ronny Van Keer?, Loic van Oldeneel tot
Oldenzeel?, Ingo von Maurich®.

! Department of Electrical Engineering ESAT/COSIC, KULeuven, Belgium.

2 Digital Security Group - ICIS, Radboud Universiteit Nijmegen, The Netherlands.
3 Dept. of Electrical & Computer Engineering, Worcester Polytechnic Institute, USA.
4 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

5 School of Computer Science, South China Normal University.

5 Horst Gortz Institute for IT-Security, Ruhr-Universitit Bochum, Germany.

" Institute for Applied Information Processing and Communications (IATK),
Graz University of Technology, Austria.

8 ALaRI Institute, University of Lugano, Switzerland.

9 STMicroelectronics.

Abstract. The pervasive diffusion of electronic devices in security and
privacy sensitive applications has boosted research in cryptography. In
this context, the study of lightweight algorithms has been a very active
direction over the last years. In general, symmetric cryptographic prim-
itives are good candidates for low-cost implementations. For example,
several previous works have investigated the performance of block ci-
phers on various platforms. Motivated by the recent SHA3 competition,
this paper extends these studies to another family of cryptographic prim-
itives, namely hash functions. We implemented different algorithms on
an ATMEL AVR ATtiny45 8-bit microcontroller, and provide their per-
formance evaluation. All the implementations were carried out with the
goal of minimizing the code size and memory utilization, and are eval-
uated using a common interface. As part of our contribution, we make
all the corresponding source codes available on a web page, under an
open-source license. We hope that this paper provides a good basis for
researchers and embedded system designers who need to include more
and more functionalities in next generation smart devices.

1 Introduction

Whenever trying to compare different algorithms, such as in the currently run-
ning SHA3 competition for choosing a new standard hash function, compact
implementations in small embedded devices are an important piece of the puz-
zle. In particular, they usually reveal a part of the algorithms complexity that
does not directly appear in high-end devices, e.g., the need to share resources or

to minimize memory. Besides, implementations in small embedded devices such
as smart cards, RFIDs and sensor nodes are also motivated by an increasing
number of applications. As a result, studying the performance of cryptographic
algorithms systematically in this challenging scenario is generally useful.

In a recent work, the implementation of 12 lightweight and standard block
ciphers in an ATMEL AVR ATtiny45 has been investigated [14]. In order to
increase the relevance of their work, the authors additionally provided open
source codes for all their implementations on a public web page. In this paper,
we extend this initiative towards hash functions. For this purpose, we consid-
ered three main types of algorithms. First, we targeted SHA256 and the SHA3
finalists. For the latter ones, we only focused on the candidates satisfying the
SHA3 security requirements for the 256-bit output length [23], i.e., providing at
least 2256 (second) preimage resistance and 2'2® collision resistance. Second, we
selected a number of recently published lightweight hash functions, providing
both 289 and 2'28 “flat” security levels® [24]. Eventually, we also implemented
several block cipher based constructions, e.g., relying on the AES Rijndael. For
all these algorithms, we aimed for the same optimization criteria (namely small
source code size and limited memory use) and used a uniform interface (see
the details in Section 2). Resistance against physical (e.g., side-channel, fault)
attacks was explicitly excluded from the requirements. As the project involves
many different programmers, we naturally acknowledge possible biases in our
performance evaluation results, due to slightly different implementation choices
and interpretation of the guidelines. In order to mitigate these (usual) limita-
tions, we provide all our source codes on a public web page [1]. As a result, we
hope that this initiative can be used as a first step in better understanding the
performance of hash functions in a specific but meaningful class of devices.

Selected algorithms. We investigated hash functions in three main cate-
gories. First, we considered SHA256 [22] and SHA3 candidates BLAKE-256 [4],
Grpstl-256 [18], JH-256 [34], Keccak[r=1088,c=512] [6, 7] and Skein-512-256 [17].
Second, we evaluated the lightweight hash functions Quark (S and Q versions) [2],
PHOTON (160/36/36 and 256/32/32 versions) [19], SPONGENT (160,/160/80
and 256/256/128 versions) [9] and Keccak (i.e. low-cost alternatives to the stan-
dard version). Eventually, we also focused on block cipher based constructions
such as Rogaway-Steingberger [27], Hirose [20], Davies-Meyer and Shrimpton-
Stam [29], based on NOEKEON [10], AES-256, Rijndael 256 [11] and SEA-
192 [30]. More details on these algorithms are given in the extended paper [5].

2 Methodology and Metrics

In order to be able to compare the performance of the different hash functions
in terms of speed and memory space, the developers were asked to respect a list
of common constraints, detailed hereunder. (1) The code has to be written in

! i.e. the same security is required for collision, preimage and 2nd preimage resistance.

assembly, if possible in a single file. It has to be commented and easily readable,
for example, giving the functions the name they have in their original specifi-
cations. (2) The function has to be implemented in a low-cost way, minimizing
the code size and the RAM use. (3) Data does not have to be preserved by the
hashing process. This allows direct modification of the data zones in RAM, hence
reducing the amount of memory needed. (4) The interface should be made up
of 3 functions. (a) init takes no input and initializes the internal state, which
is a dedicated memory zone seen as a black box, and returns no output; (b)
update takes as input a full block of data, updates its internal state by pro-
cessing that block and returns no output; (c) final takes as input the (possibly
empty) last chunk of data together with its size and processes it before finalizing
the hash computation. By convention, the data passed to final is necessarily an
incomplete block. (5) Data exchanges are performed with pre-defined memory
zones where data has to be put before calling functions, or can be found on their
return. For example, the data block to hash has to be put at the pre-defined
address SRAM_DATA before a call to update, and the final hash can be found at
SRAM_STATE on return of final. Most input/output values are thus implicitly
passed. The only explicitly passed value is the size of the data passed to final.
(6) Only the internal state is preserved between calls to these functions. No as-
sumption can be made that other RAM zones (e.g. SRAM_DATA) or registers
will stay unchanged. (7) The target device is an 8-bit microcontroller from the
ATMEL AVR device family, more precisely the ATtiny45. It has a reduced set
of instructions and no hardware multiplier. A common interface file was pro-
vided to all designers (available on [1]). Note that for some functions (e.g., for
block cipher based), the padding was not explicitly defined. In these cases, we
appended n null bytes, followed by the length of the message coded as a 64-bit
value, where n is chosen to make the global message length a multiple of the
block size. The basic metrics considered for evaluation are code size, number of
RAM words, and cycle count. Performances were measured on 4 different mes-
sage lengths: 8, 50, 100 and 500 bytes, ranging from a very small (smaller than
one block) to a large message. Finally note that some of the guidelines were not
always followed, because of the cipher specifications making them less relevant
(which will be specified when necessary).

3 Description of the ATtiny45 Microcontroller

The ATtiny45 is a 8-bit RISC microcontroller from ATMEL’s AVR series. The
microcontroller uses a Harvard architecture with separate instruction and data
memory. Instructions are stored in a 4kB Flash memory (2048 x 16 bits). Data
memory involves the 256-byte static RAM, a register file with 32 8-bit general-
purpose registers, and special I/O memory for peripherals like timers, analog-
to-digital converters or serial interfaces. Different direct and indirect address-
ing methods are available to access data in RAM. Especially indirect address-
ing allows accessing data in RAM with very compact code size. Moreover, the
ATtiny45 integrates a 256-bytes EEPROM for non-volatile data storage. The

instruction-set of the microcontroller contains 120 instructions which are typi-
cally 16-bits wide. Instructions can be divided into arithmetic logic unit (ALU)
operations (arithmetic, logical and bit operations) and conditional and uncon-
ditional jump and call operations. The instructions are processed within a two-
stage pipeline with a pre-fetch and an execute phase. Most instructions are
executed within a single clock cycle, leading to a good instructions-per-cycle ra-
tio. Compared to other microcontrollers from ATMEL’s AVR series such as the
ATmega devices, the ATtiny45 has a reduced instruction set (e.g. no multiply
instruction), smaller memories (Flash, RAM, EEPROM), no in-system debug ca-
pability, and less peripherals. The ATtiny45 also has lower power consumption
and is cheaper.

4 Implementation Detalils

4.1 SHA256 and SHA3 Candidates

SHAZ256. Like its predecessor SHA1, SHA256 is optimized for 32-bit software
implementation. Hence, it can be expected to be similarly efficient on 8-bit AVR
processors. When implementing the iteration step of its compression function,
the main observation is that six out of eight working registers are just circularly
copied. To reduce code and cycles for memory transfer operations, the addresses
of the RAM-based working registers are reassigned using circular pointer arith-
metic instead of addressing these registers by its names A-H explicitly.

Circular pointer arithmetic as part of the iteration step is also used to update
the input word according to the message expansion. Besides 32-bit modular addi-
tions, SHA2 requires 32-bit right rotations by r = {2,6,7,11,13,17,18,19, 22,25}
bits and right shifts by s = {3,10}. Rotations and shifts by parameters larger
than 8 bits first swap 8-bit register accordingly; then single bit operations on the
swapped 32-bit word are performed to correspond to f = {r, s} mod 8. SHA256
uses up to three 32-bit bit rotations processing the same input in a row so that
reordering of rotation and shift operations by ascending f-values improves effi-
ciency.

BLAKE-256. The RAM consumption is mainly due to storing 64 byte input
data, 64 byte state, 32 byte chain value, 8 byte salt, and an 8 byte counter. The
initialization vectors (32 byte) and constants (64 byte) are stored in the flash
memory of the microcontroller. We refrained from transferring the constant table
into the RAM in order to keep RAM consumption low. BLAKE’s permutation
table o consists of 10 x 16 entries. However, each entry is only a four bit number
so we merged two entries in one byte and later select the upper/lower 4-bits by
masking. Thus, the permutation table requires just 80 instead of 160 bytes in
ROM. In order to maintain a decent performance while keeping the code size
down we incorporated the observation by Osvik [25] to efficiently load and store
in-/outputs of the round function G; (a, b, ¢, d). Furthermore, we use loops where
applicable and move recurring tasks such as loading and storing the counter into
functions. An exception to this rule is the implementation of the round function.

Since it is called 80 times when hashing one message block its runtime heavily
impacts the overall performance. Therefore, we decided to unroll critical parts
of the round function.

Grgstl-256. Grgstl has a state of 64 bytes. During the update function, we
need to keep the state, the input message and the previously computed hash
in memory. Thus, we need 192 byte of RAM. The ShiftBytes is computed by
offloading each row, one at a time, from the state into the register of the micro-
controller and then writing it back in the new position. In order to increase the
performance and reduce the number of accesses to the memory, the SubBytes is
computed together with the ShiftBytes. The MixBytes is computed as proposed
by Johannes Feichtner [16, 28], and is carried out one column at a time. Finally,
to easily compute the padding, 8 bytes of memory are used to keep track of the
numbers of messages. This 8 bytes are copied directly in the appropriate position
of the padding block.

JH-256. Specifications for a bitsliced implementation of JH are available, but
require to store 42 256-bit round constants in memory, which is not compliant
with our low-cost constraints. Hence, JH was implemented according to the ref-
erence specifications. The utilization percentage of the RAM is high as JH needs
128 bytes to store the state, 64 for the input block and 32 for the round constant.
In order to improve the performance, the S-box and linear transformation were
combined into two look-up tables, of 32 bytes each, as was done in the opti-
mized 8-bit implementation provided by JH author [33]. For the same reason,
the initial state was precomputed and stored in program memory. It allows us
to save the initialization phase which is equivalent to the processing of one input
block. Regarding the permutation, it is performed by reading the state bytes
in a different order at the beginning of each round. Finally, the state bits are
reorganized at the beginning and end of each function E8. This bitwise permuta-
tion is time consuming and requires additional memory. Those problems can be
partially prevented by reorganizing the input bytes before XORing them with
the state.

Keccak. In a first level, we implemented the sponge construction, which comes
down to XORing r-bit message blocks into the state, with > 0 the rate, and
to calling the underlying permutation. In a second level, we implemented the
permutations Keccak-f[b] for b € {200,400, 800, 1600}. The sponge construction
imposes that the capacity c is twice the security strength level and that b =
r 4+ ¢, and our implementation allows any combination of rate and capacity
under these constraints. For clarity, the benchmark focuses on three specific
instances: the SHA3 candidate Keccak[r = 1088, ¢ = 512], and the lightweight
variants Keccak[r = 144, ¢ = 256] and Keccak[r = 40,c = 160] for the 128-
bit and 80-bit security strengths levels, respectively. Any pair of instances with
¢ = 256 and ¢ = 160 would have satisfied the requirements, but our choice
aims at minimizing b for a given ¢ and thereby the RAM usage, consistently
with a lightweight context. Inside the implementation, some operations (i.e., the
rotations in 6 and p) are performed on a lane basis, mapping a lane to /200

byte(s). Some other operations, such as x or the parity computation in 6, are
instead slice-oriented, taking advantage of the representation of 8 consecutive
slices in 25 bytes [8]. Note that in the specific case of Keccak-f[200], the two
approaches collide as the state contains exactly 8 slices or 25 lanes, mapped to
25 bytes. RAM usage is composed of b/8 bytes for the state and some working
memory (b/40 bytes, or 0 for Keccak-f[200] as the AVR registers suffice). If the
desired output length is greater than the rate (e.g., for lightweight instances),
an additional output buffer is needed to perform the squeezing phase.

Skein-z-y. We implemented the SHA3 finalist Skein-512-256, with an output of
256 bits, limited to the hashing functionality. The internal state is therefore made
of eight 64-bit words. To keep the program memory space small and the code
readable, some basic 64-bits functions like loading, saving, adding, . .., have been
employed. The registers are only used temporarily, except the round counter. The
message, the state, the key, the key-schedule and the tweak are always in the
data space, and modified directly. The three main Threefish functions (addkey,
mix and permute) were implemented following the reference specifications. Be-
sides, the modulo 3 and modulo 9 values used in the key schedule were saved
in the program memory space. We have also developed Skein-256-256, slightly
optimized for the speed and data memory space performance, by leaving most
of the time three out of the four state words in the registers.

4.2 Lightweight Hash Functions

S-Quark and D-Quark. The critical point in the implementation of QUARK
hash functions is the update of the state?. This update phase considers the state
as two LFSRs that will be updated using three retro-action polynomials®. This
design is thought for hardware, a context where it is very efficient, but is much
more expensive in software. Nevertheless, our choice to implement this step using
a bit-slice approach provides rather good performance. The platform is an 8-bit
microprocessor and the retro-action polynomials are such that the last 8 bits of
each LFSR are not considered. Hence, our implementation performs 8 updates at
the same time reducing from 1024/704 to 128/88 polynomial computations. The
state is stored in RAM, as it is too large to be kept in registers. Computations
are ordered in such a way that the shift of the state is performed on the fly.

PHOTON-160/36/36 and PHOTON-256/32/32. First note that these im-
plementation significantly differ, since PHOTON-160 has a state matrix with
4-bit cells and uses the PRESENT S-box while PHOTON-256 has 8-bit entries
and uses the AES S-box. This results in different implementation strategies. The

2 During implementation, a minor inconsistency was discovered between the paper
description [2] and the reference code [3], which use different bit ordering conventions.
We chose to comply with the description provided in the original article. Compliance
with the C code can be obtained by inverting the order of bits in the input message.

3 An additional third will provide constants for the 1024/704 executions required to
apply the permutation P.

state of the implemented PHOTON-160/36/36 variant consists of 7-by-7 4-bit
elements which are packed into 25 bytes in order to save memory. This allows
an optimal usage of the RAM but naturally also results in additional code in
order to extract the correct nibble out of the state. It is a trade-off between code
size/speed and RAM usage. As the interface only allows messages that are a
multiple of 8 bits while each iteration of a PHOTON-160/36/36 round function
absorbs 36 bits, we just process an input block of length 72 bits and call the
PHOTON round function internally twice for a full 72-bit block. The largest
amount of computational time is spend in the permutation layer for ShiftRows
and especially during the MixColumnsSerial step as finite field arithmetic has
to be carried out on 4-bit values. The internal state of PHOTON-256/32/32
consists of 36 bytes, arranged as a 6-by-6 matrix, that goes over four different
transformations to produce a 32 byte hash digest. Due to their sizes both state
and digest have to be stored in SRAM. This generates an inherent implemen-
tation overhead, as state bytes need to be fetched from and stored to SRAM
once for each transformation. We partially reduce this overhead by merging all
row-based transformations, and also by incrementing code size. Due to its use of
AES-like permutations, the implementation of the PHOTON-256/32/32 trans-
formations can be carried out quite efficiently on 8-bit controllers. The SubCells
transformation is implemented as a memory aligned lookup table resulting in im-
portant cycle savings. The MixColumnsSerial transformation, consisting of six
consecutive calls to the AES MixColumns transformation, is similarly optimized
by implementing the multiplication by ‘02’ as a memory aligned LUT [12].

SPONGENT-160/160/80 and -256/256/128. The SPONGENT-160 state
is 160 + 80 = 240 bits or 30 bytes large. Therefore, the state can be stored in
the registers already available on the target device. However, SPONGENT uses
a PRESENT-like bit permutation in 7, and therefore every output bit of an
S-box is mapped to a distinct nibble after permutation. If we were to store the
state in the available registers, we would only have two registers for additional
computations and this would lead to a large code size when implementing the bit
permutation. Therefore, the state is stored in SRAM and a three-step iterative
approach is used for the bit permutation to achieve a smaller code size. For the
permutation, each four consecutive nibbles are permuted and stored in SRAM at
the same places. Then, the permuted nibbles are re-ordered to obtain permuted
bytes and finally bytes are re-ordered to their appropriate places in the state.
Although this approach is code-size efficient, note that it leads to an increase
in running time of the overall hashing process. The remaining operations like
round constant computation, padding and control logic are implemented in a
straightforward manner. The state of SPONGENT-256 is 256 + 128 = 384 bits
or 48 bytes large. Since the state does not fit into the available registers, we
optimized this variant with respect to code size and the state is kept in SRAM.
For the permutation, iteratively four successive bytes are loaded into registers
and the permuted byte is constructed from two bits at fixed offsets of each of
these four bytes. Afterwards the processed bytes are stored back to SRAM. This
method keeps the code very small but requires a copy of the 48 bytes state

and therefore doubles the required memory. Besides the two states no additional
memory is required. The S-boxes are stored in flash memory and must be aligned
to a address dividable by 16 for easier pointer arithmetic. Again, the remaining
operations are straightforwardly implemented.

4.3 Block Cipher-based Constructions

Rogaway-Steinberger LP /1p362. For realizing the Rogaway and Steinberger
construction principle, the matrix A suggested by Lee and Park [21] with o =
2 has been used. For operations in Faizs (addition and multiplication) we have
selected the same irreducible polynomial z!28 4+ 27 + 22 + 2 + 1 as stated in [27].
The implementation of the block cipher NOEKEON is based on the open source
version published in [14], but the decryption functionality has been removed
since it is not required for the generation of a permutations. Two variants of the
Rogaway-Steinberger scheme have been implemented: LP362 and 1p362. The
two variants mainly differ in code size. The Ip362 scheme uses a single fixed key
for all permutations, leading to about 100 bytes less code than for the LP362
scheme which uses a different fixed key for each of the six permutations. Both
variants have similar execution time, consume 92 bytes of RAM, and make use
of 8 registers for computing the hash value of a message.

Hirose double block length (DBL) construction. For simplicity we chose
an all-zero IV and the additive constant to be 1. One of the advantages of
Hirose is that the two parallel AES executions use the same key. However, due
to memory restrictions, the key should be computed on-the-fly. Hence, the two
encryptions need to be processed in parallel. The AES design is similar to the
one presented in [14], with a further optimized Shift_Rows operation. Decryption
code is not needed and has been removed. The key scheduling is performed on-
the-fly and and processes 32 bit at a time. The full 128-bit state of one encryption
block is kept in the registers. Since both encryptions are performed in parallel,
the two states have to be swapped in and out of SRAM regularly. Due to the
large key size, the swap is performed as little as every 4 rounds, keeping the
resulting overhead at a minimum. The implementation needs 82 bytes of RAM.
We chose not to overwrite the input to the update function, which results in a
need for 16 additional RAM bytes for the input. By overwriting the input these
additional 16 bytes can be saved if RAM size is critical.

Davies-Meyer construction. The implementation of the Davies-Meyer con-
struction simply requires making a copy of the message to be XORed with the
resulting encryption, resulting in an additional consumption of 32 bytes of RAM.

Shrimpton-Stam construction. The implementation of Shrimpton-Stam con-
struction only requires to take care of remembering inputs of the ciphers to be
able to XOR them to the result of the encryptions. We chose simple keys to
instantiate the functions f; so that no extra memory is required to store them.
More precisely, we respectively set all key bytes to 0x00, 0x11 and 0x22 for

f17 f2 and f3.

Rijndael-256/256. The operations to be performed during a Rijndael-256/256
encryption are simple and can be made efficient using the well-known techniques
for implementing AES on lightweight processors, like the use of a lookup table
for the S-box and the efficient multiplication by 02’ for MixColumns [13]. The
main issue when working on an ATtiny45 is the state size: whereas AES state
can be kept in registers, this is not possible any more for 256-bit blocks. As
RAM accesses are time-consuming on the ATtiny, the design of this implemen-
tation focuses on minimizing the number of these accesses. This has been done
by reorganizing the round loop (without, of course, affecting the behaviour of
the cipher) in such a way that the round ends with a ShiftRows operation. Addi-
tionally, we used an auxiliary state to perform ShiftRows efficiently. As a result,
we can fetch a full column from RAM, immediately perform MixColumns, Ad-
dRoundKey and SubBytes, and write the result in the auxiliary RAM state,
taking the effect of ShiftRow into account to determine the exact locations in
RAM. The next round is then performed similarly, but writing data from the
auxiliary state to the initial one, and so on.

SEA. The reference code was written following directly the cipher specifications,
and is a natural extension of the 96-bit version designed in [14]. During its
execution, plaintexts and keys are stored in RAM (accounting for a total of 48
bytes), limiting the register consumption to 12 registers for the running state,
one register for the round counter and some additional temporary storage. The
S-box was implemented using its bitslice representation. The block cipher was
then inserted in a Davies-Meyer mode of operation, using a similar code as the
version using Rijndael-256/256. Overall, the implementation maintains low code
size and RAM use at the cost of a large cycle count, mainly due to the large
number of rounds (177) in the 196-bit version of the cipher based on 8-bit words.

5 Performance Evaluation and Conclusions

We first refer to a number of other implementations of hash functions in ATMEL
AVR devices [8,15,25,26,28,31,32]. In general, these previous works present
benchmarking results in devices from the ATmega family rather than the AT-
tiny one, hence tolerating larger code sizes and RAM use. As they are hardly
comparable with ours and because of space constraints, we do not detail them in
this section. Overall, we believe they provide a complementary view to ours. In
particular, the pretty complete comparisons of the XBX website certainly sheds
another light on the different algorithms [32]. Note also that some of these previ-
ous works consider older versions of the SHA3 candidates. Our following results
consider the exact SHA3 finalists, according to their last updated specifications.
We recall that for the functions appearing several times in the tables (e.g. Kec-
cak, Skein, Quark, PHOTON, SPONGENT), the different lines correspond to
different specifications and not different implementations of the same algorithm.

Following Section 2, we evaluated the performance of our different algorithms
based on three main metrics, namely the code size (in bytes), RAM use (in bytes)

and cycle counts for different message sizes*. They are represented in Figures 1,
2 and 3. Besides, we also produced so-called combined metrics that aim to sum-
marize the efficiency of the hash functions in the ATtiny45. We used the product
of the code size and cycle count and the product of the RAM use and cycle count
for this purpose. Eventually, we note that all our results are given numerically in
the performance tables of the extended paper [5]. As already mentioned, these
results have to be interpreted with care, as they both represent the skills of the
programmer and the algorithms efficiency. Yet, given this cautionary note, we
believe a number of general observations can be extracted.

First, the code size and RAM usage illustrate that the implementation con-
straints were reached for all algorithms. Nevertheless, the cost of the SHA3 can-
didates is generally higher than the one of both lightweight hash functions and
block cipher based constructions. For some of them, the RAM use is close to the
limit of the ATtiny device (i.e. 256). This can be explained by the generally larger
states of all SHA3 candidates. Second, we observe that lightweight algorithms
have large cycle counts compared to other hash functions. This implies that their
overall efficiency (measured with the combined metrics) is generally low in our
implementation context. By contrast, the flexible nature of sponge-based func-
tions (including all lightweight proposals) allows reducing the RAM usage quite
significantly, which is an interesting feature for hardware and embedded software
implementations. Third, it is noticeable that the SHA3 candidates hardly com-
pete with AES-256 in Hirose construction or Rijndael-256-256 in Davies-Meyer
mode. This observation is quite consistently observed for all our metrics. Even-
tually, and as far as SHA3 finalists (in the 256-bit versions) are concerned, our
investigations suggest that BLAKE offers the best performance figures, followed
by Grgstl, Keccak, Skein and JH.

All these results were naturally obtained within a limited time frame. Hence,
we encourage the reader to download codes and possibly improve them with
further optimization. Looking at how the AES implementations have evolved
following its selection as standard, it is likely that similar improvements can be
expected for the hash functions in this work.

Acknowledgments. This work has been funded in part by the European Com-
mission’s ECRYPT-II NoE (ICT-2007-216676), by the Belgian State’s IAP pro-
gram P6/26 BCRYPT, by the ERC project 280141 (acronym CRASH), by the
7th framework European project TAMPRES, by the Walloon region’s SQT Sky-
win and MIPSs projects. Stéphanie Kerckhof is a PhD student funded by a FRIA
grant, Belgium. Frangois-Xavier Standaert is a Research Associate of the Belgian
Fund for Scientific Research (FNRS-F.R.S). Zheng Gong is supported by NSFC
(No. 61100201).

4 Note that for certain (e.g., sponge-based) functions, the data part of the RAM could
be arbitrarily reduced by changing the interface. In this case, the RAM use evaluation
in the figures excluded the data RAM (reported in gray in the tables).

SHA256 and SHA3 candidates (256-bit versions)
T T

1500 T T T
1000 1020
500
0
SHA256 BLAKE Groestl JH Keccak
lightweight hash functions (flat security)
& 1500 , ; ; . ; Il 256-bit hashes
% N 192-bit hashes
2 10001 974 160-bit hashes
P 764 752
N 598
w5001 -
P 364
il
3 o
S-Quark PHOTON SPONGENT(small) Keccak D-Quark PHOTON SPONGENT(small) Keccak
block cipher based constructions
1500 T
1080
1000
500
0
LP362/NOEK. S8&/Rijndael-256 Hirose/AES-256 DM/Rijndael-256 DM/SEA-192
Fig. 1: Performance evaluation: code size (bytes).
SHA256 and SHA3 candidates (256-bit versions)
300 T T T T T

234

SHA256 BLAKE Groestl JH Keccak

lightweight hash functions (flat security)

150 T T T T Il 256-bit hashes
m I 192-bit hashes
j] b
+, 100~ 101 96 160-bit hashes
= 66
= 50l 47 50 48 h
<
o

0 S-Quark PHOTON SPONGENT (small) Keccak D-Quark PHOTON SPONGENT(small) Keccak
block cipher based constructions

200 ;

LP362/NOEK. S838/Rijndael-256 Hirose/AES-256 DM/Rijndael-256 DM/SEA-192

Fig. 2: Performance evaluation: RAM (bytes).

SHA256 and SHA3 candidates (256-bit versions)
3000 T T T T

T
2384

2000+

1000

SHA256 BLAKE Groestl JH Keccak

4 lightweight hash functions (flat security)
3x10 ; ; T T Il 256-bit hashes
[192-bit hashes
20675 160-bit hashes
, 9427 10997 12000
3105 1313 1206
0

S-Quark PHOTON SPONGENT (small) Keccak D-Quark PHOTON SPONGENT(small) Keccak

block cipher based constructions
4000 T

cycle count (500-byte message) o3
T

3000

2000

1000

LP362/NOEK. 33/Rijndael-256 Hirose/AES-256 DM/Rijndael-256 DM/SEA-192

Fig. 3: Performance evaluation: cycle count (500-byte message).

SHA256 and SHA3 candidates (256-bit versions)

)
[=}
S
[=]

o
=]
o

3000 T T T T T
) 2365
<. 2000
©
% 1000
0]
5]
Q
IS 0
® SHA256 BLAKE Groestl JH Keccak
i
>
fel lightweight hash functions (flat securit:
& 15000 ‘g e ; ,(y‘) Il 256-bit hashes
3 Tt I 192-bit hashes
= 10000 9168 12363 160-bit hashes
>
o]
© 50001 4
@
2 788 907
o 0
> PHOTON SPONGENT(small) Keccak D-Quark PHOTON SPONGENT(small) Keccak
8 block cipher based constructions
+, 3000
2
@
N
w
[M]
o
o
o

LP362/NOEK. SS5/Rijndael-256 Hirose/AES-256 DM/Rijndael-256 DM/SEA-192

Fig.4: Performance evaluation: code size (bytes) x cycle count (500-byte mes-
sage).

RAM (bytes) x cycle count (500-byte message) 1P

[+
a
o

e

=}

[=]
T

[N)

(=1

o
T

2000

SHA256 and SHA3 candidates (256-bit versions)
T

T T
0
SHA256 BLAKE Groestl JH Keccak

lightweight hash functions (flat security)
3000 ; ; . T Il 256-bit hashes
[192-bit hashes
160-bit hashes

1365
1000 -
613 517 600
242 126

58
S-Quark PHOTON SPONGENT (small) Keccak D-Quark PHOTON SPONGENT(small) Keccak

o

block cipher based constructions
0 T

LP362/NOEK. 33/Rijndael-256 Hirose/AES-256 DM/Rijndael-256 DM/SEA-192

Fig. 5: Performance evaluation: RAM (bytes) x cycle count (500-byte message).

References

http://perso.uclouvain.be/fstandae/source_codes/hash_atmel/.

J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia. QUARK: A
lightweight hash. In S. Mangard and F.-X. Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 1-15. Springer, 2010.

J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia. QUARK C imple-
mentation. Available at https://www.131002.net/quark/, 2010.

J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 proposal
BLAKE. Submission to NIST (Round 3), 2010.

J. Balasch, B. Ege, T. Eisenbarth, B. Gérard, Z. Gong, T. Glineysu, S. Heyse,
S. Kerckhof, F. Koeune, T. Plos, T. Péppelmann, F. Regazzoni, F.-X. Standaert,
G. V. Assche, R. V. Keer, L. van Oldeneel tot Oldenzeel, and I. von Maurich.
Compact implementation and performance evaluation of hash functions in attiny
devices. Cryptology ePrint Archive, Report 2012/507, 2012. http://eprint.iacr.
org/.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
Ecrypt Hash Workshop 2007, May 2007. also available as public comment
to NIST from http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/
2007 _May.html.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The KECCAK reference,
January 2011. http://keccak.noekeon.org/.

. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer. KECCAK

implementation overview, September 2011. http://keccak.noekeon.org/.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede.
Spongent: The design space of lightweight cryptographic hashing. IJACR Cryptology
ePrint Archive, 2011:697, 2011.

J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. Nessie proposal:
NOEKEON, 2000. Available online at http://gro.noekeon.org/Noekeon-spec.
pdf.

J. Daemen and V. Rijmen. The block cipher rijndael. In J.-J. Quisquater and
B. Schneier, editors, CARDIS, volume 1820 of Lecture Notes in Computer Science,
pages 277-284. Springer, 1998.

J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2002.

J. Daemen and V. Rijmen. AES proposal: Rijndael. In Proc. first AES
conference, August 1998. Available on-line from the official AES page:
http://csrc.nist.gov/encryption/aes/aes home.htm.

T. Eisenbarth, Z. Gong, T. Gilineysu, S. Heyse, S. Indesteege, S. Kerckhof, F. Koe-
une, T. Nad, T. Plos, F. Regazzoni, F.-X. Standaert, and L. van Oldeneel tot
Oldenzeel. Compact implementation and performance evaluation of block ciphers
in attiny devices. In A. Mitrokotsa and S. Vaudenay, editors, AFRICACRYPT,
volume 7374 of Lecture Notes in Computer Science, pages 172—-187. Springer, 2012.
T. Eisenbarth, S. Heyse, I. von Maurich, T. Poeppelmann, J. Rave, C. Reuber,
and A. Wild. Evaluation of sha-3 candidates for 8-bit embedded processors. The
Second SHA-3 Candidate Conference, 2010.

J. Feichtner. http://www.groestl.info/implementations.html.

N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The skein hash function family (version 1.3), 2010. http://wuw.
skein-hash.info/.

P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schlaffer, and S. S. Thomsen. Sha-3 proposal grgstl (version 2.0.1), 2011.
http://wuw.groestl.info/.

J. Guo, T. Peyrin, and A. Poschmann. The PHOTON family of lightweight hash
functions. In P. Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in
Computer Science, pages 222-239. Springer, 2011.

S. Hirose. Some plausible constructions of double-block-length hash functions. In
M. J. B. Robshaw, editor, F'SE, volume 4047 of Lecture Notes in Computer Science,
pages 210-225. Springer, 2006.

J. Lee and J. H. Park. Preimage resistance of lpmkr with r=m-1. Inf. Process.
Lett., 110(14-15):602-608, 2010.

National Institute of Standards and Technology. FIPS 180-3, Secure Hash Stan-
dard, Federal Information Processing Standard (FIPS), Publication 180-3. Tech-
nical report, U.S. Department of Commerce, Oct. 2008.

NIST. Announcing request for candidate algorithm nominations for a new crypto-
graphic hash algorithm (SHA-3) family. Federal Register Notices, 72(212):62212—
62220, November 2007. http://csrc.nist.gov/groups/ST/hash/index.html.
NIST. NIST special publication 800-57, recommendation for key management
(revised), March 2007.

D. A. Osvik. Fast embedded software hashing. Cryptology ePrint Archive, Report
2012/156, 2012. http://eprint.iacr.org/.

D. Otte. Avr-crypto-lib, 2009. http://www.das-labor.org/wiki/
Crypto-avr-lib/en.

27.

28.

29.

30.

31.

32.

33.

34.

P. Rogaway and J. P. Steinberger. Constructing cryptographic hash functions from
fixed-key blockciphers. In D. Wagner, editor, CRYPTO, volume 5157 of Lecture
Notes in Computer Science, pages 433—450. Springer, 2008.

G. Roland. Efficient implementation of the grgstl-256 hash function on an at-
megal63 microcontroller. Available at http://groestl.info/groestl-0-8bit.pdf, June
2009.

T. Shrimpton and M. Stam. Building a collision-resistant compression function
from non-compressing primitives. In L. Aceto, I. Damgard, L. A. Goldberg, M. M.
Halldérsson, A. Ingdlfsdéttir, and I. Walukiewicz, editors, ICALP (2), volume 5126
of Lecture Notes in Computer Science, pages 643—654. Springer, 2008.

F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater. Sea: A scal-
able encryption algorithm for small embedded applications. In J. Domingo-Ferrer,
J. Posegga, and D. Schreckling, editors, CARDIS, volume 3928 of Lecture Notes in
Computer Science, pages 222-236. Springer, 2006.

J. Walter. Fhreefish (skein implementation) website. http://www.syntax-k.de/
projekte/fhreefish/.

C. Wenzel-Benner, J. Graf, J. Pham, and J.-P. Kaps. XBX benchmarking results
january 2012. Third SHA-3 candidate conference, http://xbx.das-1labor.org/
trac/wiki/r2012platforms_atmegal284p_16mhz, Mar 2012.

H. Wu. JH Documentation Website. http://www3.ntu.edu.sg/home/wuhj/
research/jh/.

H. Wu. The Hash Function JH, January 2011. http://www3.ntu.edu.sg/home/
wuhj/research/jh/.

