
Towards the Hardware Accelerated Defensive
Virtual Machine - Type and Bound Protection

Michael Lackner1, Reinhard Berlach1, Johannes Loinig2,
Reinhold Weiss1, and Christian Steger1

1 Institute for Technical Informatics,
Graz University of Technology, Graz, Austria

{michael.lackner,reinhard.berlach,rweiss,steger}@tugraz.at
2 NXP Semiconductors Austria GmbH, Gratkorn, Austria

johannes.loinig@nxp.com

Abstract. Currently, security checks on Java Card applets are per-
formed by a static verification process before executing an applet. A
verified and later unmodified applet is not able to break the Java Card
sand-box model. Unfortunately, this static verification process is not a
countermeasure against physical run-time attacks corrupting the con-
trol or data flow of an applet. In this piece of work, designs for Java
Card Virtual Machines are investigated in relation to their ability to
perform run-time security checks. These security checks are accelerated
by hardware units and performed in parallel to CPU instructions that
are executing concurrently. Attacks on the Java operand stack and lo-
cal variables, which are elementary components for the Virtual Machine,
are thwarted by type and bound protection. To enable these hardware
checks, different designs of a defensive Java Card Virtual Machine are
compared to their overheads on a prototype platform.

1 Introduction

Current applied static verification of Java Card applets provides insufficient se-
curity protection against run-time Fault Attacks. This is especially a problem in
the field of multi-application Java Cards. In this field, cards are used in a wide
range of applications (e.g., passport, e-money) and have the ability to perform
post-issuance loading of new applets. An adversary provoking a Logical Attack
by changing the bytecode or internal representation of an uploaded Java applet
can get access to security related data from other applets or the Java Card Vir-
tual Machine (JCVM) [12]. To thwart Logical Attacks, verification of applets is
performed either off-card or on-card. This verification procedure is currently a
static process performed once before an applet is executed. One of the most time
and memory consuming checks performed, is the bytecode verification process
[9, 15] which is based on a data flow and control flow analysis.

Java Card applets are stored into non-volatile memories such as EEPROM.
With the help of physical Fault Attacks it is possible for a JCVM to read out
incorrect values from these memories or skip CPU instructions. Therefore, it

2 Towards the Hardware Accelerated Defensive Virtual Machine

is possible to change the bytecode of stored applets to execute ill-formed Java
instructions. Knowledge about these attack possibilities is used in [3] to create
a new class of attacks called Combined Attacks. To perform Combined Attacks,
applets which pass the verification process are used and become malicious in
combination with a Fault Attack. Combined Attacks are used to bypass the Java
Card sand-box, mounted by the static verification process, JCVM and Java Card
Runtime Environment [11].

To guard the Java Card against run-time attacks, a so called defensive JCVM
is needed [4]. This defensive JCVM can be reached by performing all checks done
by the static verification process during run-time. However, this is currently not
achievable because of the constrained hardware resources of today’s Java Cards.
In this work specific security checks, extracted from the Java Card specification
[12], are performed on the executing bytecode during run-time. In this specifi-
cation the data flow is exactly defined for every bytecode with some additional
constraints which must be fulfilled.

To speed up bytecode checking during run-time, new hardware protection
units are introduced in this work to speed up the checks performed on every
bytecode. These hardware checks can be performed in parallel while the CPU
performs its operations. Therefore hardware checks are a good solution for run-
time checks that are performed very often, in contrast to software checks. Soft-
ware checks slow down the whole system if they are performed on the same
CPU that the standard operations are performed on. Beside this benefit, hard-
ware checks also have the advantage of being more immune against additional
fault injects onto the Java Card. This is due to the fact that software checks [13,
5, 2] are vulnerable to skipping them by additional Fault Attacks. This threat
of skipping software security operations leads Vertanen in [16] to the conclusion
that hardware assisted run-time checks are mandatory for enhancing run-time
security for Java Cards.

This work introduces a hardware accelerated defensive JCVM which performs
selected security checks on the executing bytecodes by hardware with a low
computational overhead. These checks are also part of the verification process
which is done statically before executing a Java applet. As far as we know, such
a hardware accelerated defensive JCVM has not been introduced in literature
before.

The contribution of this work is the definition of a run-time security policy
extracted from the Java Card specification [12] to ensure that the executing
bytecode performs valid operations. This run-time policy prevents type confu-
sion and overflow/underflow attacks on the operand stack (OS) and local variable
(LV) memory inside the JCVM. With this policy it is not possible for an adver-
sary to perform type confusion between values of type integralData and object
references on the OS and LV. Furthermore, two hardware accelerated defensive
JCVM designs are presented with their main parts, such as additional hard-
ware protection units and new CPU instructions. The new CPU instructions are
used inside the JCVM to process bytecodes and communicate directly with the

Towards the Hardware Accelerated Defensive Virtual Machine 3

hardware protection units leading to a very low computational overhead. This
communication is depicted in Figure 1.

Section 2 gives an overview of attacks on Java Cards, bytecodes violating the
Java frame bounds and how to enable a defensive JCVM. Section 3 describes the
security policy and the design of all defensive JCVMs introduced in this work.
Section 4 presents the prototype implementation of these designs on a SystemC
8051 derivate. Section 5 analyses the run-time costs on execution speed and
hardware changes needed to activate our JCVM designs. Finally, conclusions
and future work are drawn in Section 6.

Java Card VM

Local

Variables

Operand

Stack

Bytecode

execute

Hardware

Security Checks
access

Type + Bound Protection
Memory

Fig. 1. In this work the operand stack and the local variables are protected during
run-time by hardware accelerated security checks.

2 Related Work

In this section an overview of possible attacks on the Java Card is given with
focus on run-time fault attacks. Following this, previous work on run-time coun-
termeasures and an overview of defensive JCVMs are presented.

2.1 Attack Overview

Attack scenarios on Java Cards are manifold [18, 19]. Side Channel Attacks are
used to draw conclusions of internal operations by studying physical phenomena
of the chip. Invasive Attacks are used for optical or measurement analysis of
internal components. Fault Attacks (FA) change the physical environment of the
chip under attack [1]. These are for example, temperature changes, additional
light of a laser or spikes in the power supply or clock source. These FA lead to
an undefined behavior of the chip by skipping instructions or read/write errors
to memory like the EEPROM. This is especially a problem for post-issuance
loaded applets due to the fact that they are mostly installed in non-volatile
memory. Therefore, a FA during the fetch process of a JCVM can lead to ill-
formed applets even if a static verification was performed. This ill-formed code
enables an adversary to circumvent the Java Card security model and enables an
applet to have access to unauthorized resources. This security problem of FA to

4 Towards the Hardware Accelerated Defensive Virtual Machine

verified applets is well known in literature and is used to enable different attack
paths [10, 3, 17, 14].

2.2 Frame Bound Violation Attacks

Generally, inside every Java Frame, specific memory areas are reserved for OS,
LV and internal frame data. Every time a new Java method is invoked, the JCVM
creates a new frame and pushes it onto the Java stack. Specific implementation
details for the Java Frame are not provided by Java Card specification. Therefore,
the specific frame data depends on the particular implementation. In general the
frame data contains a return address so that it is possible to return to the code
of the old frame. The size needed for a frame and all its containing elements
(e.g., OS, LV) is ascertained when the method is invoked and is not changing
during method execution.

Ill formed bytecode can now access illegal memory regions by performing an
OS or LV out of bound access as illustrated in Figure 2. In [5] an attack called
EMAN2 was performed. There an invalid LV index was used by an ill formed
bytecode sstore to access the memory region of the frame data where the return
address of the current frame is stored. With the help of this ill formed bytecode,
an adversary can set the return address to any value. In their attack the return
address was set to the address of an array which leads to the security threat
of executing adversary definable data. This illegal execution of data opens new
security issues not treated here in detail. The threats of OS overflow/underflow
and bytecodes using invalid LV index are thwarted by the run-time policy of this
work.

Undefined Data Undefined DataLocal Variables Operand Stack

Frame Data

return

address

internal

data

Bytecodes Overflow OS Bytecodes Underflow OS

Bytecodes use Invalid LV index (EMAN2)

 Actual Java Frame

Change return

address to any value

Fig. 2. OS overflow and underflow leads to illegal memory access outside the reserved
OS memory space. An adversary who uses bytecode with invalid LV index can overwrite
the return address of the current active frame [5].

2.3 Enabling a Defensive Virtual Machine

Currently the Java Card research community concentrates on finding attack
paths to bypass the Java Card security model by FAs and Combined Attacks.

Towards the Hardware Accelerated Defensive Virtual Machine 5

[3, 10, 17, 14]. Also a lot of effort is invested in exploiting and thwarting Side
Channel Attacks [8]. In contrast to these big research topics, the question of
how to enable a defensive JCVM is a research topic with little public attention.
However, in the Java Card industry the know-how to enable defensive JCVM
designs is of course available. This fact is proven by different works bringing
the defensive nature of current available industrial Java Card products to light
[10, 7]. Techniques and knowledge that provide such a defensive design are of
course not freely available. Currently research related to FA countermeasures is
focussed on static verification of an applet and checking that the exact verified
code is executed. This can be done by code integrity and control flow checks in
software (SW) during run-time [13, 5]. The annotations that enable these checks
are stored in an additional component of a verified CAP-file. Research was also
done to check the OS integrity against FA by performing double reads by SW
[2].

This work focuses on a hardware accelerated defensive JCVM performing
security checks during run-time. Based on a policy it checks if the executing
bytecode is behaving correctly. Compared to current countermeasures in litera-
ture the approach in this work does not just check the integrity of the bytecode
or OS, it performs checks based on a policy. This approach stops either manip-
ulated applets loaded onto the card or run-time FA from violating this policy.
Furthermore, performing these checks in hardware makes it more resistant to
additional FA which are also able to skip additional software checks.

3 Design of the Defensive Virtual Machine

In this section the run-time security policies for all defensive JCVM designs in
this work are shown. This is followed by our method of reducing all Java data
types to two main types.

3.1 Defensive Run-time Policy

The OS and LV, located in the Java Frame, are main parts of the JCVM. The
JCVM is a stack machine and performs most operations on the OS. Therefore,
securing these parts of the JCVM are the first steps to hampering or stopping
Fault Attacks during run-time. The following two main policies for the OS and
LV are retained by our defensive designs during run-time:

– Frame Type Policy: All bytecodes which access the OS or LV must use
the right main data type (integralData or reference) which is expected by
the bytecode during its execution. In this work all numerical types are com-
bined (boolean, byte, short) to the main data type integralData. All object
references (e.g., short array, byte array, Class A) are combined to the main
data type reference.

– Frame Bound Policy: Bytecodes operating on the OS or LV are not al-
lowed to access data outside the frame bounds. This means that bytecodes
are not allowed to overflow or underflow the OS. Furthermore, all bytecodes
accessing the LV must be inside the borders of the reserved LV memory area.

6 Towards the Hardware Accelerated Defensive Virtual Machine

Policy Creation: The two policies above were extracted from the JCVM spec-
ification [12] where for every bytecode a textual description of the operation is
given. In this specification it is for every bytecode defined from which JCVM
component needed operands are taken and results are written back. Also the
type information is specified for every operand and result value. Such a byte-
code specification for the sstore instruction is listed below. This bytecode consists
of two bytes, the opcode (0x29) and an index referencing to an item of the LV.

”The index is an unsigned byte that must be a valid index into the local
variables of the current frame (Section 3.5, ”Frames”). The value on top
of the operand stack must be of type short. It is popped from the operand
stack, and the value of the local variable at index is set to value.” [12]

The requirement that bytecodes perform no OS stack overflow/underflow, access
the right LV index and operate with the right types on the OS and LV is crucial
for the security concept of the Java Card and therefore checked by all defensive
JCVM designs of this work.

3.2 Design of the Defensive JCVMs

In this section we introduce two designs for a defensive JCVM which fulfill
the security policies defined in the previous section. A general overview of the
defensive JCVM designs is shown in Figure 3 and described how they are used
in more detail below. Note that our defensive JCVM designs are not able to
thwart all sort of attacks on a Java Card. Examples of such undetected attacks
are control flow changes (skipping a branch instruction) or data corruption (read
corrupted values from the RAM).

– Type Storing: Every entry on the OS or LV is extended with type infor-
mation in order to distinguish between integralData and reference during
run-time. During run-time it is now possible to check if the expected type
for the bytecode is on the OS or LV which is the obvious defensive approach
to enable a Defensive JCVM. A disadvantage of this approach is the addi-
tional memory needed for type storing and the computational overhead to
perform type checking.

– Type Separating: Every Java main data type (integralData and reference)
operates on its own OS and LV memory area. No general OS and LV area
where all data types occur exists. Type confusion between the two main data
types is therefore no longer possible during run-time because every bytecode
always receives the right type.
A disadvantage of the Type Separating design is that an attack is only
detected by its security related side effects on the current frame. Such a side
effect is for example an OS underflow for a specific type.

3.3 Two Types for Type Storing and Type Separating

In this section we introduce our approach for separating the Java Card types into
two main data types to enable the Type Storing and Type Separating JCVM

Towards the Hardware Accelerated Defensive Virtual Machine 7

Standard Java Card VM

Type Storing Java Card VM Type Separating Java Card VM

Operand
Stack

Types

Local
Variables

Types

Operand
Stack

Type 1

Operand
Stack

Type N

….

Local
Variables

Type 1

Local
Variables

Type N

Operand
Stack

Local
Variables

….

Type

Security Checks

Security Checks

Bound

Defensive Designs of
this Work!

Bound

Fig. 3. In this work two designs are used to fulfill the run-time security policy.

that was presented in the previous chapter. Java bytecodes are highly typed. This
means that based on the data type different opcodes exist for the same operation
[12, Table 3-1]. For example, only the sstore bytecode is allowed to push integral
data types (boolean, byte, short) into the LV. Another Java bytecode is used
to store an element of type reference, pointing to an object, into the LV. It is
therefore possible to differentiate between two main data types and distinguish
them just by looking at the bytecode. In this work they are called integralData
and reference:

– integralData These are the primitive constant data types that represent
the numerical values of the JCVM: boolean, byte, short. Elements of this data
type can be deliberately created by executing the bytecode sconst 1. This
bytecode pushes an integral value 1 with type short on the OS.

– reference These are all kinds of references to objects and the returnAddress
type to enable sub-routines. An applet programmer can only indirectly create
elements of type reference. For example the bytecode new array pushes the
reference of a newly created array object onto the OS. This address can have
any logical structure and does not have to correlate with physical addresses
of objects stored on the card. For example the JCVM can create a random
number and a look up table maps this number to a real memory address.

By separating these two main data types it is no longer possible for an adversary
to create object references with a defined value by confusing integralData and
reference. It is also not possible for an adversary to get deeper insight into
how the JCVM represents references. For this insight an adversary would have
to perform type confusion between reference and integralData by sending the
reference out of the card from the APDU buffer. The APDU class is responsible
for receiving and sending data to off-card applications.

8 Towards the Hardware Accelerated Defensive Virtual Machine

Thwarted Threats in Literature This sort of type confusion between integral
data and object references is well known and often used as the first step of an
attack path [16, 10, 7, 5, 17]. This attack path can enable an adversary creating
self mutable code by executing data from a Java array [7, 5] or even gain access
to forbidden methods of objects [17].

Note that type confusion between different objects such as short array and
Class A object is not detected by the defensive JCVM designs in this work. This
is because all object references are assigned to the reference main data type and
cannot be distinguished. This determination also applies to the main data type
integralData where it is not possible to detect type confusion between byte and
short.

4 Prototype Implementation

In this work five different prototype JCVMs were implemented in C and assem-
bly language. The JCVMs are based on the Classic Edition of the Java Card
specification [12]. The hardware (HW) platform on which they run is an 8-bit
Smart Card model written in SystemC [6]. This model is memory and instruction
cycle accurate. Into this HW platform new typed CPU instructions were imple-
mented. Furthermore, additional HW protection units were added to enable HW
accelerated security checks for bytecodes accessing the OS and LV memory area.

4.1 Additional CPU Instructions

The information decoded into the new CPU instructions is illustrated in Figure 4.
New typed CPU instructions are used by our JCVMs to process the bytecodes
and perform access to the OS and LV memory regions. These decoded pieces of
information are the access type (Read, Write), the destination of the accessing
memory (OS, LV) and the type which should be written/read (integralData,
reference, untyped). With the help of these pieces of information the protection
units are able to check if the new CPU instruction doesn’t perform a security
policy violation during run-time. Such a violation is for example a LV element
address which is outside the actual LV memory bounds.

Two examples of how to use these new instructions inside the JCVM pro-
gram code in order to process the Java bytecodes is outlined in Figure 5. The
sadd bytecode first reads two values from the OS by the new CPU instruction
Read OS integralData. The result of the addition of these values is then written
back by the instruction Write OS integralData. Another example is the byte-
code astore 0. This bytecode uses the CPU instruction Read OS reference to
read a reference value from the OS and stores it into the LV by the instruction
Write LV reference. The big advantage in the sense of computational overhead
of the new typed CPU instructions is that the JCVM can communicate very
effectively with the HW protection units by using the new CPU instructions.

Towards the Hardware Accelerated Defensive Virtual Machine 9

Java Card Virtual

Machine

new CPU

instructions
CPU

Access to Memory Area with Data Type

· Read
· Write

Protection

Units

· Operand Stack
· Local Variables

· integralData
· reference
· untyped

Main Memory

Operand Stack

Local Variables

Fig. 4. The prototype JCVMs proposed in this work uses new assembly instructions
to access the run-time protected OS and LV memory regions.

sadd: //Add two short values on the OS

 short VAR1, VAR2, SUM; //Create variables for sadd

 VAR1 = Read_OS_integralData; //Read first operand from OS

 VAR2 = Read_OS_integralData; //Read second operand from OS

 SUM = VAR1 + VAR2; //Sum the two operands

 Write_OS_integralData = SUM; //Write the sum back onto the OS

astore_0: //Store reference from OS to LV

 short REF1; //Create variables for astore_0

 REF1 = Read_OS_reference; //Read reference from OS

 Write_LV_reference(0) = REF1; //Write reference into LV element 0

Fig. 5. Pseudocode example of the two bytecodes sadd and astore, processed by the
JCVM. The JCVM uses our new CPU instructions to access the OS and LV memory.

4.2 Additional Hardware Protection Units

An overview of the new CPU instructions and the protection units needed to
activate the Type Storing and Type Separating JCVM is presented in Figure 6.
Based on the new CPU instructions introduced in the previous section, our HW
protection units restrict the access to the security critical memory regions of the
OS and LV. The Type Storing JCVM needs a type protection unit to check if
the type expected by the bytecode is also available on the OS or LV.

– Bound Protection Unit (BPU): This unit is responsible for thwarting
attacks performing an OS overflow or underflow. Furthermore, all bytecodes
accessing the LV using a wrong index are detected. The BPU is used by the
Type Storing and Type Separating JCVM prototype.

– Type Protection Unit (TPU): The TPU is responsible for checking that
the bytecodes that are accessing the OS and LV are operating with the right
data type. The TPU is only needed to enable the Type Storing JCVM.

4.3 Type Storing JCVM Implementation Details

To enable a Type Storing JCVM, the TPU must store additional type informa-
tion for every element held by the OS and LV. Due to the fact that these two

10 Towards the Hardware Accelerated Defensive Virtual Machine

parts are located in RAM, one additional type bit was added to every 8-bit word.
This bit enables the distinction between the two main data types integralData
and reference.

Read

Write

Operand

Stack

Local

Variables

to with

Access Memory Area Data Type

Bound

Protection

Bound

Protection

Type

Protection

OS

LV

 OS integralData

 LV reference

 OS reference

 LV integralData

Type Storing JCVM Type Separating JCVM

Hardware Protection Unit

Used by defensive JCVM designs

Java Card

VM

New Typed CPU Instructions

Java

Bytecode

executes

use

Store and

check type

M
a

in
 M

e
m

o
ry

M
a

in
 M

e
m

o
ry

integralData

untyped

reference

Fig. 6. Implementation overview of the two JCVM prototypes. Hardware protection
units perform run-time checks on the OS and LV.

4.4 Type Separating JCVM Implementation Details

In this section we give insight into the detail of how the Type Separating JCVM
was implemented and describe a tool chain to enable it. The Type Separating
JCVM performs all bytecode operations on the right typed OS and LV. This
Type Separating approach avoids type confusion. The type checking problem is
reduced to a bound checking problem.

Most bytecodes work well with our run-time type separating approach to two
main data types (integalData, reference). An exception are the bytecodes oper-
ating with undefined types on the OS: pop, pop2, dup, dup2, dup x and swap x.
In this paper we call them untyped bytecodes. For these untyped bytecodes the
JCVM does not know on which of the two separated OS, specific operations are
performed during run-time.

As a solution for this problem the missing type information was added di-
rectly into the bytecode by using unused bytecodes which are not defined in
the Java Card specification. For example, the pop instruction is either convert
to pop reference or pop integralData. The JCVM now knows right after fetching
a new bytecode, which typed OS it must operate on. Therefore, no execution

Towards the Hardware Accelerated Defensive Virtual Machine 11

speed is wasted searching for the type information in additional components up-
loaded on the card. In the JCVM specification [12] only 185 (0x00 to 0xb8) of
all available 8-bit bytecodes are specified. The unused bytecodes from 0xb9 to
0xfd can be used to decode the operand stack type information that is needed
directly into the instruction.

To perform the exchange of untyped bytecodes with new typed bytecodes we
propose a static replacement process performed once for every method. To speed
up this process, type information obtained during the bytecode verification pro-
cess can be used to exchange the untyped bytecodes with typed ones. However,
in this work the replacement process for the untyped bytecodes is not looked at
in detail.

5 Prototype Results and Discussion

In this section we show the computational overhead coming from full software
(SW) implementations compared to running our HW accelerated prototypes.
The SW implementations perform the same security checks that are performed
by the HW protection units. Furthermore, the additional hardware overhead is
compared between all prototypes.

5.1 Computational Overhead

Performing all security checks in SW increases the computational overhead sig-
nificantly for frequently executed bytecodes, as illustrated in Figure 7. For ex-
ample the sload bytecode executed by a Type Storing prototype in SW has a
computational overhead of around 115% caused by the following run-time SW
operations:

– Check if the index parameter to the LV is valid.
– Check if the element at the LV index is of type integralData.
– Check if pushing a value from the LV index to the OS provokes an overflow.
– Store the fact that the new value on the OS is of type integralData.

If the sload bytecode is executed on a HW accelerated prototype the overhead
decreases to 5%. In Table 1 different groups of bytecodes are compared to their
computational overhead. As expected, the HW accelerated prototypes consume
much less computational overhead compared to prototypes which implement the
checks in SW.

5.2 Hardware Overhead

In this section we give an overview of the HW modifications used to activate
our HW accelerated prototypes, as depicted in Table 2. The instruction set of
a standard 8051 microcontroller consists of 255 opcodes. Adding our new CPU
instructions means an overall CPU instruction increase of around only 3,5%.
Another important hardware modification is that the RAM module of the HW

12 Towards the Hardware Accelerated Defensive Virtual Machine

0%

50%

100%

150%

200%

250%

300%

sload sadd saload bspush ifeq overall

Type Storing HW
Type Separating HW
Type Separating SW
Type Storing SW

Fig. 7. Run-time measurement for specific bytecodes and the overall time of all imple-
mented bytecodes for different JCVM implementations. Measurements are normalized
to a JCVM without any run-time security checks.

Table 1. Computational overhead for all prototypes, normalized to a JCVM without
performing run-time security checks.

Type Storing Type Separating

Bytecode Groups HW SW HW SW

1: Arithmetic/Logic +7% +123% +7% +47%
2: Local Variable Access +5% +152% +9% +52%
3: Operand Stack Manipulation +5% +119% +3% +54%
4: Control Transfer +8% +77% +9% +23%
5: Array Creation/Manipulation +6% +111% +9% +59%

Overall +6% +115% +8% +42%

accelerated Type Storing JCVM was extended with an additional type bit for
every memory word in order to differ between the main data types integralData
und reference. Therefore, overall RAM memory size increases to 12,5%.

Table 2. HW modifications needed to activate the HW accelerated run-time security
checks of the prototypes.

Additional Hardware Type Storing Type Separating

New 8051 CPU Instructions 9 (+3,5%) 8 (+3,1%)
New 8-bit Control Registers (SFRs) 11 (+52,4%) 15 (+71,4%)
New Bound Protection Unit (BPU) Yes Yes
New Type Protection Unit (TPU) Yes No
Extend RAM word with type bit Yes No

5.3 Type Confusion Attack Example

An example of a run-time attack on the Java Card prototypes in order to per-
form type confusion between integralData and reference is illustrated in Figure 8.
There, a run-time attack changes the bspush code 0x10 0x19 to 0x00 0x19. The
JCVM interprets 0x00 as NOP instruction and performs no action. The following

Towards the Hardware Accelerated Defensive Virtual Machine 13

byte 0x19 is interpreted as the bytecode aload 1 which pushes an array reference
onto the OS. The sreturn instruction would now take the array reference and
push it back to the calling function. An adversary is now able to use the array
reference as an integralData which enables different attack paths such as exe-
cuting the data inside the array [16, 10, 7, 5, 17]. Both defensive JCVMs designs
from this work are able to thwart this type confusion attack on the OS between
integralData and reference.

00: 19 aload_1

01: 03 sconst_0

02: 04 sconst_1

03: 38 bastore

04: 10 19 bspush

06: 78 sreturn

00: 19 aload_1

01: 03 sconst_0

02: 04 sconst_1

03: 38 bastore

04: 00 NOP

05: 19 aload_1

06: 78 sreturn

{ref}

{ref,int}

{ref,int,int}

{}

{}

{ref}

{ref}

{ref}

{ref}

{}

{}

{ref}

{ref}

{}

{int}

{int,int}

{}

{}

{}

integralData reference

public short dummy{byte[] array}

{

 array[0] = 0x01;

 return 0x19;

}

Type Storing JCVM Type Separating JCVM
Run-time Attack

bytecode: Java code:

malicious bytecode:

Type Confusion Attack Thwarted by

Type Storing and Type Separating JCVM!

Underflow!Wrong Type!

OS impact

compile

int...integralData

ref...reference

Fig. 8. Run-time type confusion attack on the OS to receive the address of an array.
All defensive JCVM implementations of this work are able to thwart this attack.

Type Storing: By using the new typed CPU instructions, it is decoded
inside the JCVM code that the sreturn instruction expects a value of type in-
tegralData on the OS. The previously executed instruction aload 1 pushed the
reference of an array with type reference on the OS. Therefore, the TPU hard-
ware module finds the wrong type for the sreturn bytecode on the OS and throws
a security exception.

Type Separating: Both main data types have their own OS and LV mem-
ory areas during run-time. Therefore, the malicious instruction aload 1 pushes
an array reference onto the reference OS containing all values from type refer-
ence. The sreturn bytecode tries to pop data from the integralData OS which
is empty. The return operation is now aborted by a security exception because
an underflow on the integralData OS is detected by the BPU hardware module.
All type confusion attacks are avoided by the type separating architecture of the
JCVM.

14 Towards the Hardware Accelerated Defensive Virtual Machine

6 Conclusion and Future Work

This work presents Java Card Virtual Machine (JCVM) designs to counter dif-
ferent Fault Attacks. This is done by performing run-time security checks based
on a security policy for each bytecode. These policies ensure that each bytecode
which operates on the operand stack or the local variables memory area uses
the right data type (integralData or reference). Furthermore bytecodes which
overflow or underflow the OS or LV are detected. These run-time checks are
accelerated by hardware protection units to make it harder to skip these checks
with additional Fault Attacks. Furthermore, the defensive JCVM designs are
profiting from the parallel execution of the hardware checks by having very low
computational overhead.

In this work the design of a Type Storing and Type Separating JCVM were
shown. Both designs were implemented on a Java Card prototype platform with
several additional hardware changes. The requirements of the hardware to enable
run-time checking by hardware protection units were listed for both defensive
JCVM designs. We measured that these hardware accelerated prototypes con-
sume 6% and 8% more execution time overall compared to a JCVM without
any additional run-time security checks. This overhead is very low compared
to prototypes which perform all run-time security checks in software and con-
sume around 115% and 42% more execution time. Therefore, we have shown
that our approach of performing additional security checks during run-time by
using hardware units is feasible especially in the case of resource constrained
Java Cards.

For future work we will focus on the bytecode replacement process of untyped
bytecodes required by the defensive Type Separating approach. This transfor-
mation is needed to give the JCVM type information needed during run-time to
process untyped bytecodes like pop. Furthermore, we are working on increasing
the number of separated main types so that it is also possible to detect type
confusion between integralData like short and byte.

Acknowledgement

The authors would like to thank the Austrian Federal Ministry for Transport,
Innovation, and Technology, which funded the CoCoon project under the FIT-
IT contract FFG 830601. We would also like to thank our project partner NXP
Semiconductors Austria GmbH.

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of the IEEE 94(2), 370 –382 (2006)

2. Barbu, G., Duc, G., Hoogvorst, P.: Java Card Operand Stack:Fault Attacks, Com-
bined Attacks and Countermeasures. In: Prouff, E. (ed.) Smart Card Research
and Advanced Applications, Lecture Notes in Computer Science, vol. 7079, pp.
297–313. Springer Berlin Heidelberg (2011)

Towards the Hardware Accelerated Defensive Virtual Machine 15

3. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In: Gollmann, D., Lanet, J.L., Iguchi-Cartigny, J. (eds.) Smart
Card Research and Advanced Application, Lecture Notes in Computer Science, vol.
6035, pp. 148–163. Springer Berlin Heidelberg (2010)

4. Barthe, G., Dufay, G., Jakubiec, L., de Sousa, S.: A Formal Correspondence be-
tween Offensive and Defensive Javacard Virtual Machines. In: Cortesi, A. (ed.)
Verification, Model Checking, and Abstract Interpretation, Lecture Notes in Com-
puter Science, vol. 2294, pp. 325–328. Springer Berlin / Heidelberg (2002)

5. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff, E. (ed.) Smart Card Research
and Advanced Applications, Lecture Notes in Computer Science, vol. 7079, pp.
283–296. Springer Berlin Heidelberg (2011)

6. IEEE: Open SystemC Language Reference Manual IEEE Std 1666-2005, IEEE
7. Iguchi-Cartigny, J., Lanet, J.L.: Developing a Trojan applets in a smart card.

Journal in Computer Virology 6, 343–351 (2010)
8. Krieg, A., Grinschgl, J., Steger, C., Weiss, R., Haid, J.: A Side Channel Attack

Countermeasure using System-On-Chip Power Profile Scrambling. In: On-Line
Testing Symposium (IOLTS), 2011 IEEE 17th International. pp. 222 –227 (July
2011)

9. Leroy, X.: Java Bytecode Verification: An Overview. In: Berry, G., Comon, H.,
Finkel, A. (eds.) Computer Aided Verification, Lecture Notes in Computer Science,
vol. 2102, pp. 265–285. Springer Berlin Heidelberg (2001)

10. Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In: Grimaud, G., Standaert, F.X. (eds.) Smart Card Research
and Advanced Applications, Lecture Notes in Computer Science, vol. 5189, pp.
1–16. Springer Berlin / Heidelberg (2008)

11. Oracle: Runtime Environment Specification. Java Card Platform, Version 3.0.4,
Classic Edition (2011)

12. Oracle: Virtual Machine Specification. Java Card Platform, Version 3.0.4, Classic
Edition (2011)

13. Sere, A., Iguchi-Cartigny, J., Lanet, J.L.: Checking the Paths to Identify Mutant
Application on Embedded Systems. In: Kim, T.h., Lee, Y.h., Kang, B.H., Slezak,
D. (eds.) Future Generation Information Technology, Lecture Notes in Computer
Science, vol. 6485, pp. 459–468. Springer Berlin / Heidelberg (2010)

14. Sere, A., Iguchi-Cartigny, J., Lanet, J.L.: Evaluation of Countermeasures Against
Fault Attacks on Smart Cards. International Journal of Security and Its Applica-
tions, Vol.5 No.2 pp. 49–61 (April 2011)

15. Sun Microsystems Inc.: Java Card 2.2 Off-card Verifier. White Paper (June 2002)
16. Vertanen, O.: Java Type Confusion and Fault Attacks. In: Breveglieri, L., Koren, I.,

Naccache, D., Seifert, J.P. (eds.) Fault Diagnosis and Tolerance in Cryptography,
Lecture Notes in Computer Science, vol. 4236, pp. 237–251. Springer Berlin /
Heidelberg (2006)

17. Vetillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Gollmann,
D., Lanet, J.L., Iguchi-Cartigny, J. (eds.) Smart Card Research and Advanced
Application, Lecture Notes in Computer Science, vol. 6035, pp. 133–147. Springer
Berlin Heidelberg (2010)

18. Witteman, M.: Advances in Smartcard Security. Information Security Bulletin pp.
11–22 (July 2002)

19. Witteman, M.: Java Card Security. Information Security Bulletin pp. 291–298 (July
2003)

