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Abstract. Fault analysis poses a serious threat to embedded security
devices, especially smart cards. In particular, modeling faults and find-
ing effective practical approaches that are also generic is considered to
be of interest for smart card industry. In this work we propose a novel
methodology to deal with a difficult question of choosing multiple pa-
rameters required for effective faults. To this aim, we investigate several
algorithms and find a new promising direction using evolutionary compu-
tation. Our experimental results on some of the smart cards used today
show the potential of this new approach. Our best algorithm is a tailored
search strategy especially developed for the purpose of finding the best
choice of parameters for glitching. With this approach we found some of
off-the-shelf devices, although secured against this type of attacks, still
vulnerable.
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1 Introduction

Since smart cards are around in our lives for the past three decades, and becom-
ing ever more pervasive, it seems impossible that we ever lived without them.
Yet, at the same time the threats to the security of those small devices are mul-
tiple and cheap and at the same time effective countermeasures against various
attacks belong to the most extensively researched topics today.

In 1996 Anderson and Kuhn [1] discussed the tamper-resistance of smart
cards, and in 1999 Kommerling and Kuhn presented a set of techniques for tam-
pering with them [2]. It became evident that the possibilities for the adversary
are numerous. In general, the techniques for tampering can be classified as passive
or active. In passive techniques some side-channel information is monitored and
there is no interference with the normal processing of the card. An example of



these passive techniques is the analysis of power consumption, as introduced by
Kocher et al. [3] or electromagnetic radiation [4]. In the case of active techniques,
the device is not only monitored but also external interferences affect the normal
behavior of the device. An example is Fault Injection (FI) and these interfer-
ences, the so-called glitches, can be of different nature: optical (laser pulses) and
electrical glitches (voltage, clock), temperature changes, electromagnetic (EM)
radiation, etc. are used to cause some malfunctioning, resulting in some cases
in secret key recovery. Fault injection techniques by glitching are typically non-
inwvasive techniques, in the sense that the smart card is not physically modified
(versus other invasive techniques that require hardware modifications).

A fault injection attack is considered to be successful if after exposing the
device under attack to a specially crafted external interference, the device shows
an unexpected behavior, which can be exploited by an attacker (eg. leaking of
sensitive information, bypassing security checks, etc.). However, this external
interference has to be precisely tuned for the fault injection to succeed. As an
example, a complete characterization of a clock signal glitch requires from the se-
curity analyst to define more than 10 parameters (related to clock signal voltage
levels, time offset of the glitch, etc.). In addition, hardware designers introduce
countermeasures in their devices for preventing fault injection attacks. Hence,
finding the correct parameter setting is a highly non-deterministic process, and
countermeasures just add up to this non-determinism. As a consequence, security
analysts usually set a value range for each parameter, and leave their fault injec-
tion setup experimenting over thousands of different parameter configurations
within those given ranges to be analyzed off-line afterwards.

Finding the correct parameters for a successful FI can be considered as a
search problem where one aims to find, within minimum time, the parameter
configuration or ranges of parameter values which result in a successful fault
injection. The search space, considering all possible combinations of the values
of interest for the fault injection such as voltage, timing, offset, etc., is too large
to perform an exhaustive search. For example, there are in total 8 parameters to
be set for voltage (VCC) glitching even without considering multiple glitches. As
a simple example, testing only 6 values yields 6% = 1676916 parameter combina-
tions! This is unfeasible to test in a reasonable amount of time as it would take
over 19 days assuming a quite fast rate of one measurement per second. Here,
by a measurement we mean a complete execution of the algorithm of interests
on the device including the final response (which can have several different out-
comes such as reset, stop, etc.) Considering this problem within the tasks of
a security analyst, which often has a very limited or no knowledge about the
inner design of the device (blackboz testing), setting an accurate range for the
parameters can be quite challenging, and a bad estimation of these ranges leads
to spending a lot of time in testing parameter combinations that could have been
easily discarded upfront.

Due to all these issues and the unfeasibility of performing an exhaustive
search due to the time constraints, there is a clear need for a methodology for
parameters search that can ultimately lead to a more effective security evalu-



ation. In this work we present several possibilities for finding and tuning the
parameters keeping the assumptions on the device under attack as generic as
possible. We show several effective approaches that were tested on off-the-shelf
devices with different successes. We develop a search strategy that is especially
tailored towards a large class of devices of today using common assumptions and
defining a new model. Our best algorithm is proven to be efficient against some
state-of-the-art protected (against glitching) devices. Furthermore, a new direc-
tion based on generic algorithms is also investigated and found suitable when
less is known about the device under attack.

1.1 Related Work

The concept of fault analysis-based attacks is known in the research community
for around twenty years. Boneh, DeMillo and Lipton published an attack on RSA
about exploiting hardware faults for cryptanalysis [5,6]. The attack described,
often also called the Bellcore attack, resulted in numerous contributions in, not
just theoretical papers on attacks and countermeasures assuming that faults can
be applied, but also in more practical works showing what is really possible in
terms of inducing faults. However, the first type of papers are more common,
mainly due to the lack of proper equipment at academia. All together, there are
only a few works that address the practical issues that arise while applying these
techniques.

Koémmerling and Kuhn [2], published a paper in 1999, which is considered
to be the milestone in the context of security evaluation against fault attacks.
In this work the authors present an extensive collection of techniques for fault
injection and other tampering techniques and give hints on how to mitigate
some of them. The paper highlights the case of VCC fault injection (referred to
as glitch attacks) and emphasizes those as the ones most useful in practice.

Aumiiller et al. published in 2002 one of the first practical works on fault
analysis [7], in which they describe a real-life scenario of the impact of injecting
glitches in the VCC and clock lines of an IC. They also suggest some coun-
termeasures applicable in this specific case. Approximately at the same time,
Skorobogatov and Anderson introduced optical (laser) fault injection [8], where
they describe injecting faults with a laser on a decapsulated IC. This technique
is still very successful nowadays for defeating the security of many protected
devices, but it is out of scope for this work.

Recent paper from van Woudenberg et al. [9], describes a real attack sce-
nario for an Optical Fault Injection attack. The practical problem of setting
the parameters for fault injection is introduced in their work and the authors
briefly discuss the lack of methodology to solve it as the main direction they
rely on is based on heuristics. In addition, the paper gives a nice overview of
all the practical issues that arise during a real execution of the FI attacks on
actual hardware. Similarly, the work of Balasch et al. [10] explores the effects
of glitches injected in the clock line of an IC. This work is very interesting for
identifying various effects that a glitch can cause on real hardware in terms of
defining all possible outcomes of a successful fault injection. However, it has to



be noted that current smart cards usually run on an internal clock which makes
this FI technique unfeasible.

All together, our paper continues this line of research focusing on more prac-
tical problems with fault injection but it is also unique. Namely, we first focus
on the problem of finding the right set of parameters in order to optimize the
glitching effects that can be explored by the adversary. Second, we derive new
theoretical framework for this multi-parameters search and apply it on some
actual off-the-shelf smart cards. While doing this, we evaluate several search
strategies, one of which is using ideas from evolutionary computation. Our con-
tributions are specified more precisely below.

1.2 Owur Contribution
Here we summarize the contributions of this work:

— We propose a new methodology to handle the difficult problem of finding the
right sets of parameters for glitching. Our methodology is based on a model
that is suitable for smart cards of today. Namely, we distinguish between
two phases for glitching, one focusing on voltage parameters and the other
one on proper timing.

— After experimenting with several approaches, we develop a new search strat-
egy that is time-effective and breaks some off-the-shelf devices.

— We advocate a new direction for this problem building on our first results
from the approach based on genetic algorithms.

The remainder of this paper is organized as follows: in Section 2 we give
the problem statement and the model we use for the experiments, in Section 3
we present several search strategies and their results. Finally, in Section 4 we
conclude the paper and give some suggestions for future work.

2 Problem Statement

The goal is to find a search strategy for VCC FI parameters that lead to a suc-
cessful fault injection. Input of the search consists of the parameters required by
the search strategy to proceed, and an estimated initial range for every param-
eter. Search space is a set of all the possible combinations of values for every
parameter required to define the VCC FI attack. Parameters that can have real
values are considered as discrete-valued parameters sampled with the maximum
resolution of the acquisition hardware devices, and all value ranges are bounded.
The goal of the search is to get the maximum information about the behaviour of
a device with the minimum number of measurements given a black-box scenario.
Also, the goal is to find parameters that define a successful VCC FT attack in the
case that device is vulnerable to fault attacks caused by glitching. As an output
of the search, a report of the behavior of device is generated. Additionally, an
output can include a parameter combination or a set of parameter combinations
that lead to a successful VCC FI attack. Also, a parameter combination or a
set of parameter combinations that trigger unexpected behavior of device can
be also included although they do not lead to a successful VCC FI attack.



2.1 Model

We divide the search into two phases: in the first phase we look for the appro-
priate glitch shape (containing all the parameters that define the signal) and in
the second phase we look for the timing instant in which we have to inject the
fault. The motivation for the parameter split into two stages is obtaining a re-
duction in the dimensionality (thus, complexity) of the problem. The feasibility
of this parameter splitting was experimentally tested to be possible and useful:
all TOEs covered by this research (and also TOEs outside the scope of this re-
search) showed a similar behavior w.r.t. glitch shape-related parameters. The
second stage search consists of a time sweep with glitch shapes (glitch length,
glitch voltage) output by the first stage search. The time range defined in the
initial search space is discretized in n time instants* . In each time instant, a
subset of the glitch shapes output by the first stage is tested.The verdicts of all
measurements are reported as the final output of the parameter search. In this
paper we give sufficient details for the first search phase only. For the second
phase one should proceed similarly.

Two parameters of interest for the first phase are glitch voltage and glitch
length. A verdict represents the class that, based on a response from the device, a
glitch has been classified to. The assumptions that allow predicting the possible
verdict of a measurement given the glitch voltage and the glitch length are as
follows:

1. There exists an upper bound for the glitch voltage, VLOW?®, and if the glitch
voltage is set to this value or higher, device will just ignore the glitch (it will
interpret it as signal noise), and a NORMAL verdict will be obtained.

2. There exists a lower bound for the glitch voltage, VHIGH®, and if the glitch
voltage is set to this value or lower, device interprets the glitch as a power
cut or as an attempt to tamper with it, and a RESET or MUTE verdict will
be obtained.

3. There exists a lower bound for the glitch length, LLOW, and if the glitch
length is set to this value or lower, device will just ignore the glitch, and a
NORMAL verdict will be obtained.

4. There exists an upper bound for the glitch length, LHIGH, and if the glitch
length is set to this value or higher, device interprets the glitch as a power

4 In the time dimension, the response of the TOE could be different each time instant.
However, due to the presence of internal unstable clocks in TOEs Target B and
Target C, the glitch offset has been omitted in the search. The clock jitter causes
a FI time instant spread bigger than the accuracy we can obtain with the testing
equipment by setting a precise glitch offset in time (2 ns). Additionally, the model
assumes a stable operation of the TOE, and not a drastically changing power profile
over time (e.g. TOE booting) for the validity of glitch shape-related parameters in
the 2nd stage of the search.

Note that small glitches that are to be ignored have a length close to LLOW and
voltage close to VLOW, but the glitch voltage is typically a negative value, hence
the counter-intuitive naming convention for voltage boundaries.

ot



failure or as an attempt to tamper with it, and a RESET or MUTE verdict
will be obtained.

5. If the glitch voltage and the glitch length take values in the ranges of (VLOW,
VHIGH) and (LLOW, LHIGH) respectively, the response of device depends
also on the rest of the parameters of the glitch (both from the glitch shape
and the glitch timing).

The explanations for the possible verdict classes are given below.

Verdict from the class NORMAL will be obtained if the device response
was expected, verdicts RESET and MUTE are derived if the device responds
accordingly while performing a measurement. If the device is vulnerable to FI,
the verdicts from the class INTERESTING can be found. It points to the area
defined by the decision boundary between the plane regions corresponding to the
NORMAL and RESET/MUTE regions plus some threshold distance. If these
two regions overlap, the class INTERESTING is to be found in the intersection
of these two plane regions. (We assume here a two-dimensional space with only
the glitch length and glitch voltage parameters.) The verdict CHANGING is
found in the same area as the INTERESTING verdict. This verdict class is
assigned when two measurements with the same parameter configuration for the
glitch shape yield different verdicts. The verdict SUCCESSFUL is to be found
inside the (glitch voltage, glitch length) area which produces the INTERESTING
verdicts where can be more than one combination of parameters that yields a
SUCCESSFUL verdict.

3 Experiments and Discussion

In this section we present different search strategies and their experimental re-
sults on several smart cards. First we give additional information about search
space settings followed by the experiments. Afterwards, we present a comparison
among different search strategies in terms of their effectiveness.

3.1 Search Space Settings and Experiment Definition

The initial search space parameters are given in Table 1.

The experiments are performed as follows:
For each tested device, several runs of each strategy for the first stage of the
search are executed. Besides the common parameters already mentioned in Ta-
ble 1, we also use the following algorithms:

— MonteCarlo search (baseline): 2048 measurements
— FastBoxing: 2 iterations (mazxlter=2), 4 - 4 - 64=1024 measurements per it-
eration (n=4, numMeas=64), 10000 maximum iterations (mazlter=10000)

5 The number of glitches was chosen as a random value due to not observing any
statistically significant change in the TOE response w.r.t. this parameter within the
given range.



Table 1. Search Space parameters

Parameter name Parameter value
Glitch voltage [-5, -0.05] V
Glitch length [2, 150] ns
VCC Voltage VCC 5V

CLK High Voltage 5V

CLK Low Voltage ov

CLK signal frequency 1 MHz

Number of glitches  random value from [1, 10] ©

— Adaptive zoom&bound: 10000 maximum iterations (mazlter=10000), 4 - 4
grid (n=4), 1 and 3 measurements per iteration (numMeas=1, numMeas=3)

— Genetic Algorithm: maximum number of generations = 20, population size=30,
maximum number of consecutive generations without improvement=50

3.2 Experimental results

The tests are conducted on three targets. Target A is unprotected smart card
and is therefore suitable for the training phase. Smart cards B and C are pro-
tected against several FI techniques, especially VCC FI. Since one of the possible
outcomes of a VCC FI attack is permanent malfunction of a device, multiple
samples of each card were used. For all search strategies, all samples from the
same device showed the same physical behavior w.r.t. glitch shape-related pa-
rameters. In this sense, the glitch shape parameters found for a device sample
are valid for all samples” of the same device. This behavior was not observed for
the time-related parameters.
For the table listings, the following abbreviations are used:

— TestReps: number of repetitions of the test

— MeasInTest: average total number of measurements in tests, if MeasInTestT
then it includes first and the second stage.

— INT(M): number of measurements with a INTERESTING verdict class. The
figure is presented as the median value of all values in the tests. The choice
of the median is for reflecting the typical performance of the search strategy.

— INT(%): number of measurements with a INTERESTING verdict class per
hundred (%). This value is computed from the sum of all INTERESTING
measurements in all tests divided by the accumulated number of measure-
ments in all tests, and normalized to 100 measurements.

— SUC(M): same as INT(M) but for the SUCCESSFUL verdict class.

— SUC(%): same as INT(%) but for the SUCCESSFUL verdict class.

" For each device all samples were from the same batch, hardware revision and man-
ufacturer.



3.3 Monte Carlo Strategy and Results

This search strategy consists of performing measurements with randomly se-
lected parameter combinations within the given initial search space. The random
distribution for selecting values is considered to be uniform for each parameter
present in the search space. This search strategy is considered as the baseline
search strategy. The short test runs with 3072 measurements had no SUCCESS-
FUL measurement, and only the 76800 measurement test run produced 11 SUC-
CESSFUL measurements.

Furthermore, due to the random nature of the parameter selection there is
a significant number of repeated parameter combinations (glitch length, glitch
voltage) for the glitch shape. This repetition is interesting if it is made in the
plane region that yields the INTERESTING verdict class. However, it is highly
undesired for measurements in which the device response is predictable.

3.4 FastBoxing Strategy and Results

FastBoxing algorithm is a simple, iterative algorithm devised for the automatic
setting of the parameters in the first stage of the search. The algorithm works in
the following way: search strategy assumes the boundaries for the glitch shape:
VHIGH, VLOW and LLOW, LHIGH. The search algorithm will try to find these
boundaries by doing two steps: a measurements step and a reflection step. For
each iteration, the measurement step consists of a sampling of the search space
and then it performs measurements at the sampled points. After performing the
measurements, the algorithm will start the reflection step for finding out an es-
timate of the VHIGH, VLOW and LLOW, LHIGH boundaries. For the VLOW
boundary, all points to its right should produce the NORMAL verdict, so the
algorithm does the following. First column of points starting from the right is
analyzed. If all the points of this column belong to the NORMAL verdict class,
then the next column to its left is analyzed. If all points in the second column also
belong to the NORMAL verdict class, the algorithm estimates that the VLOW
boundary is not between those two columns. When the algorithm finds a col-
umn that contains some points belonging to NORMAL verdict and some points
belonging to RESET or MUTE classes, it estimates that the VLOW boundary
is between that column and the column to its right. Once this estimation has
been done, the VLOW boundary is temporarily set to this estimation. For the
rest of the boundaries, the process is analogous.

Once the algorithm stops, the last estimation for the boundary values for
the glitch length and glitch voltage will be the output. The next search stage
will sample points inside the box bounded by the VHIGH, VLOW, LLOW and
LHIGH boundary values for its input.

In Table 2 we summarize the results of the tests for the FastBoxing strat-
egy. The second stage of the parameter search is performed with a set of 10
(glitch length, glitch voltage) parameter combinations randomly selected from
the bounded region in the OUTPUT of the FastBoxing search strategy.



Table 2. Results for the FastBoxing search strategy

Device TestReps MeasInTestT INT(M) SUC(M) INT(%) SUC(%)

Target A 5 3048 (20484+1000) 26 9 0.800  0.361
Target B 5 3048 (2048+1000) 0 0 0.00 0.00
Target C 1 3048 (2048+1000) 0 0 0.00 0.00

In the case of the FastBoxing search for the vulnerable device Target A,
the inaccurate estimation of the INTERESTING verdict class results in poor
(glitch length, glitch voltage) parameter combination choices. This is especially
noticeable if these parameter combinations are close to the boundary values.
Because of this, the number of SUCCESSFUL measurements varies significantly
depending on the random selection of parameter combinations. As an example,
Run 2 of the test yielded 26 SUCCESSFUL measurements, whereas Run 3 of
the test yielded only 4 SUCCESSFUL measurements.

It is worth mentioning that, to focus on the search space region in which the
INTERESTING verdict class is found, the performance of the search improved
significantly. All test runs of the FastBoxing search strategy yielded INTER-
ESTING and SUCCESSFUL measurements.

3.5 Adaptive zoom&bound Strategy and Results

The Adaptive zoom&bound search strategy iteratively bounds the region that
yields the INTERESTING or CHANGING verdict classes and “zooms” inside
that bounded region. This is achieved by decreasing the distance between new
measurements in the glitch shape search space. The region bounding is performed
in an adaptive way, similar to a 2D version of a binary search. The Adaptive
zoomd&bound search uses the same two-step iterative process as FastBoxing al-
gorithm, but the processing done in the reflection step is different. Reflection
step works as follows: the distance between two neighbour points is set to a
pointDist variable. The measurements are placed in a 2D plane for the glitch
shape (just for ordering them). The horizontal axis is the glitch voltage param-
eter, and the vertical axis is the glitch length parameter. For each one of the
available measurements from the last test, all neighbours of a measurement are
checked for their verdict class. If all neighbour measurements in the 2D plane
belong to the same verdict, the decision boundary between verdict classes is not
found between the point and its neighbours. If a neighbour measurement in the
2D plane belongs to a different verdict class then the boundary is estimated to
be between them. A new measurement is added for the test in the next itera-
tion and placed at a distance pointDist/2 between them. When all points have
been analysed, a new test has been generated with a list of measurements only
in the estimated region that produces the INTERESTING verdict class. The
algorithm stops if all measurements in the initial measurement step belong to
the same class, if no new test measurements are generated during the reflection
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step, or when the distance between neighbour points has reached the maximum
resolution of the hardware devices. Once the algorithm stops, it outputs the set
of glitch shape parameters that bound the region producing the INTERESTING
verdict class.

The output of the algorithm is a set of the glitch shape parameters (glitch
length, glitch voltage) of the measurements that are considered to be bounding
the region that yields the INTERESTING verdict class. The output also con-
tains the glitch shape parameters of the measurements with INTERESTING,
CHANGING and SUCCESSFUL (if any) verdict classes. The decision of which
glitch shapes should be the output is implemented by taking the measurements
produced in the last iteration of the algorithm.

In Table 3 we summarize the results for performed tests for the Adaptive
zoom&bound strategy.

Table 3. Results for the Adaptive zoom&bound search strategy, 1 performed VCC FI
attack per measurement

Device TestReps MeasInTestT INT(M) SUC(M) INT(%) SUC(%)

Target A 5 1198 (198+1000) 47 13 3.895 1.064
Target B 5 1128 (128+1000) 0 0 0.00 0.00

The results of the Adaptive zoom&bound strategy are better than in pre-
vious search strategies. In particular, the number of measurements required for
completing the first stage of the parameter search is very low, so the search
speed is improved significantly. For the initial search space used throughout the
experiment, the optimum performance is computed as follows:

N =n - [mazx(logz(rangeV /resolutionV),
loga(rangeL /resolutionL))] = (4 - 4) - [max(loga(5/0.05),log2(150/2))] = 112 meas.

In the case of Target A, the search strategy has more measurements due to the
device behavior in the search space region that produces the INTERESTING
verdict class. Additionally, the number of INTERESTING and SUCCESSFUL
measurements are almost four times larger than those for the FastBoxing algo-
rithm.

Figure 1 shows the plot for the first stage of the parameter search in the case
of the Adaptive zoomé&bound strategy.

It can be seen that most of the measurements are performed near the de-
cision boundary between verdict classes. Also, the distance between measure-
ments w.r.t. glitch shape parameters is very small. This allows to bound the
region producing the INTERESTING verdict class quite accurately. The Adap-
tive zoom&bound search strategy also allowed to experimentally observe that
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Fig. 1. First stage plot of explored measurements for different devices by the Adaptive
zoom&bound search strategy. Green is NORMAL, blue is RESET (A) or MUTE (B)

the glitch shape parameters (glitch length, glitch voltage) are the same for dif-
ferent samples of the same device. Figure 2 shows the plot of the measurement
classification for the first stage parameter search of two Target A samples. It can
be experimentally verified that a (glitch length, glitch voltage) glitch shape pa-
rameter value that leads to a SUCCESSFUL verdict in one sample also does the
same in other targets. It can be said then that the glitch shape parameters are
exportable between samples of the devices. In contrast, time-related parameters
that produce SUCCESSFUL verdicts do change between samples.
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Fig. 2. First stage plot of two samples of Target A.

Here we also present a successful VCC FI attack on Target C. This target
incorporates specific countermeasures against VCC fault injection, as indicated
by the manufacturer. In addition, this card has been granted the EAL4+ certifi-
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cation level of Common Criteria. This means that the device has been previously
tested by an independent security evaluation lab against different attack tech-
niques, including VCC fault injection. The output of the first stage of the search
is depicted in Figure 3.
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Fig. 3. Output of the measurement classification for Target C by the Adaptive
zoom&bound search strategy, 3 repetitions per measurement. The orange color depicts
the CHANGING verdict class.

We can see that due to the focus in the search space region producing the
CHANGING verdict class and the multiple attempts per measurement, the jitter
was mitigated and suitable (glitch length, glitch voltage) parameter settings
could be found. Table 4 shows the results for the performed parameter search.
As far as the authors know, this target was not known to be vulnerable to VCC
FI attack before.

Table 4. Results for the Adaptive zoom&bound search strategy with Target C, 3 VCC
FI attacks performed per measurement

Device Measurementsl1®*stage Measurements2™stage INT (M) SUC(M)
Target C 812 1000 17 19
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3.6 Genetic Algorithm Strategy and Results

Besides using deterministic algorithms as the two examples mentioned above, it
is also possible to use heuristic algorithms. Since finding the correct parameter
setting is a non-deterministic process that can be considered as a search problem,
it is natural to try to use non-deterministic algorithms. Genetic algorithms are a
subclass of evolutionary algorithms where the elements of the search space S are
arrays of elementary types [11]. Since Genetic Algorithms (GAs) are typically
used as function optimization algorithms, a fitness function must be defined for
mapping the different verdict classes present in the device model to the fitness
values. In particular, the mapping currently used is: NORMAL verdict class has
value 1, RESET or MUTE verdict classes have value 2, INTERESTING verdict
class has value 8, CHANGING verdict class has value 8.5 and SUCCESSFUL
verdict class has value 10. Formally, the GA aims to find a (glitch length, glitch
voltage) tuple such that the fitness value F' is maximal. To be able to use GA
on this problem, a generic GA is modified and instead of the standard operators
we use custom selection and crossover operators. The GA generates an initial
population of n random combinations of (glitch length, glitch voltage) parameter
values. Each individual of each generation is assigned its corresponding fitness
value. Each population is evolved into a new generation of the population by
means of an evolution step (iteration step). The evolution step performs the
following tasks: in the crossover, GA takes two individuals from different ver-
dict classes and produces a new individual with a (glitch length, glitch voltage)
parameter configuration between the values of the two parent individuals. To
perform the mutation step, some individuals evolve by adding to their parame-
ter values a random value. Finally, the algorithm preserves a certain number of
individuals with the highest fitness value in the next generation.

GA performs evolution steps until a maximum number of evolution steps
is reached, or until a specified number of generations without improvement is
reached. A modification that has been introduced into the GA is the notion of
a “good enough” fitness value. The algorithm has an internal fitness threshold
value, and all generated individuals that have a fitness value equal or higher
than the threshold value will be output by the algorithm as the OUTPUT of the
first stage of the parameter search. With the current fitness function definition, a
threshold value of 8 outputs all the measurements that had an INTERESTING,
CHANGING or SUCCESSFUL verdict class. For evolutionary algorithms test
suite we use the Evolutionary Computation Framework (ECF) [12]. ECF is a
C++ framework intended for the application of any type of the evolutionary
computation, developed at the University of Zagreb.

3.7 Comparison among different search strategies

In order to have an overview of the performances of the presented search strate-
gies, Tables 5 and 6 contain the best observed metrics in tests performed with
Target A (vulnerable to VCC FI) and Target C (presumably not vulnerable to
VCC FI). The configuration of the second search stage is the same for all search
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Fig. 4. First stage plot for the measurements of the GA with the Target A.

strategies (except for the Monte Carlo search): 10 (glitch voltage, glitch length)
parameter combinations, 100 time instants.

For the table listings, the following abbreviations are used:
Meas 1°tStage: total number of measurements in 1st stage of the parameter
search;
SUC: ratio of SUCCESSFUL measurements versus the total number of mea-
surements (1504274 stages), normalized to 1/100;
Total_I: total number of INTERESTING measurements;
Total_S: total number of SUCCESSFUL measurements;
Total_M: total number of measurements (1524 stages).

Table 5. Metrics of the different search strategies for Target A.

Strategy Meas 1%*Stage SUC(%) Total_I Total_S Total M
Monte Carlo N/A 0.0000 19 0 3072
FastBoxing 2048 0.29526 26 9 3048
AdaptZoom 192 1.17450 56 14 1192
GA 1560 0.3125 21 8 2560

Looking at the results, the best overall strategy is the Adaptive zoom&bound
search strategy. It completes the first stage of the search with the least number
of measurements and it has the best ratio of SUCCESSFUL measurements, and
produces the most INTERESTING and SUCCESSFUL measurements. The use
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of information available allows to quickly direct the parameter search towards
the most promising parameter configurations.

The GA shows a promising performance, because it is able to produce a
significant number of INTERESTING and SUCCESSFUL measurements. How-
ever, the performance in terms of number of measurements in the 1st stage is not
very good. This is due to a large number of generations being produced without
significant improvements. A parameter tuning on this approach should result in
a better performance of the algorithm. This parameter tuning, in combination
with the addition of new features to the algorithm, is left as future work.

Table 6. Metrics of the different search strategies for Target B.

Strategy Meas 15*Stage SUC(%) Total I Total_S Total M

Monte Carlo N/A 0 0 0 3072
FastBoxing 2048 0 0 0 3048
AdaptZoom 128 0 0 0 1128
GA 6868 0 0 0 7868

Finally, it should be mentioned that the Monte Carlo search strategy has
been found to be the most inefficient search strategy. However, due to its random
nature, it is still a viable option if no restriction on the number of measurements
is imposed.

4 Conclusions and Future Work

This work deals with the so-far unexplored topic of finding the right parameters
for successful faults by glitching. We experiment with several search strategies
and find some promising methodologies that are effective against some propri-
etary smart cards with glitching countermeasures. The best method is rather
generic and shows good results against different devices. Finally, we identify an-
other promising direction using genetic algorithms that can be further optimized
as future work.
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Appendix: TOE details

A more detailed description of the TOEs described in this paper follows:
Target A: It is a smartcard based on an ATMegal63+24C256 1C, CMOS tech-
nology, hardware last revision 2003. This TOE does not have any side-channel
countermeasure nor fault-injection countermeasure. All processing of the card
is performed in software, and the card was running on an external 4MHz clock
frequency. In particular, this target is also available from Riscure BV as the re-
search target “Training Card 6”. The code that was attacked was a vulnerable
PIN (Personal Identification Number) authentication mechanism is as follows:
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for (i=0;i<4;i++) {
if (pin[i] == input[il)
digits_ok++;

if (digits_ok==4) //BRANCH STATEMENT == CODE UNDER ATTACK
respond_code (0x00,SW_NO_ERROR_msb,SW_NO_ERROR_1sb) ;
else
respond_code (0x00,0x69,0x85) ;

Target B: It is a smartcard bought in 2013 from a webshop from one of the
leading manufacturers in the sector. This TOE is a protected target, and has
countermeasures against SCA and FI, such as fault injection detection logic and
light, temperature and clock sensors. The IC design is from late 2004. Addition-
ally, it has dedicated logic for cryptograpic operations. More in detail, this TOE
implements the JavaCard OS 2.2.1 and GlobalPlatform 2.1.1 standard. It runs
on an internal, unstable clock at an unknown frequency. The supplied external
clock frequency was 4MHz. The card was running exclusively on software (no
crypto hardware present in the IC was used). The Java applet loaded into the
card was a double nested loop with two counters and a checksum. The code was
similar to the following piece of code:

for(outerLoopCounter=0;outerLoopCounter<2;outerLoopCounter++){
checkpoint=1;
for (innerLoopCounter=0;innerLoopCounter<1000;innerLoopCounter++){
checkpoint=2;
dummyOperationl () ;
iterations=iterations+1;
3
checkpoint=3;
dummyOperation2() ;
}
sendBytesToTerminal (outerLoopCounter, innerLoopCounter,iterations,
valueFlag) ;

Target C: It is a smartcard bought in 2013 from a webshop from one of the
leading manufacturers in the sector. This TOE is a protected target, and has
the same feature set as Target B in terms of hardware and countermeasures.
This TOE implements the JavaCard OS 2.2.1 and GlobalPlatform 2.1 standard.
It was also Common Criteria certified level EAL4+ in 2008. The Java applet
loaded into the card was the same applet as described for Target B.



