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Abstract. This paper analyzes the robustness of RSA countermeasures
against electromagnetic analysis and collision attacks. The proposed RSA
cryptosystem uses residue number systems (RNS) for fast executions of
the modular calculi with large numbers. The parallel architecture is pro-
tected at arithmetic and algorithmic levels by using the Montgomery
Ladder and the Leak Resistant Arithmetic countermeasures. Because the
architecture can leak information through control and memory execu-
tions, the hardware RNS-RSA also relies on the randomization of RAM
accesses. Experimental results, obtained with and without randomiza-
tion of the RNS moduli sets, suggest that the RNS-based RSA with
bases randomization and secured RAM accesses is protected.
Keywords: RSA, RNS, Montgomery Exponentiation, Countermeasures,
Electromagnetic Analysis.

1 Introduction

Side-Channel Attacks (SCA) are a serious threat for public-key cryptosystems
and notably for the RSA [1]. These attacks aim at recovering a secret manipu-
lated by cryptographic algorithms, by analyzing various sources of side-channel
leakages (time, power consumption, electromagnetic (EM) radiations, etc) dur-
ing their execution on a hardware device.

Countermeasures to prevent simple (SPA) and differential (DPA) power anal-
ysis on RSA can be categorized in algorithmic and hardware countermeasures.
The Square-and-Multiply Always [2] and the Montgomery Ladder [3] ensure that
all operations in the binary method run in a constant sequence of operations in
order to prevent SPA like attacks. To deal with DPA attacks, the idea of algo-
rithmic countermeasures is to randomize the message or the exponent (private
key) that are processed during the execution of a modular exponentiation. How-
ever, most of these countermeasures do not provide sufficient protection against
high-order DPA attacks or sophisticated SPA-attacks [4][21].

Residue Number System (RNS), coupled together with SPA-protected meth-
ods, is an interesting alternative to increase the robustness at the arithmetic
level. RNS provides a natural way of masking the data and the internal com-
putations because all intermediate values can be represented in different RNS
bases. However, differential, correlation and collision EM attacks [5–8] remains
fully efficient if no randomization of the RNS bases are used to effectively mask



sensitive computations. This idea is the foundation of the Leak Resistant Arith-
metic (LRA) concept proposed in [9].

The RSA hardware approach proposed in this work implements different
countermeasures. To provide protection against correlation analyses and colli-
sion attacks, the design offers protection at arithmetic level by randomizing the
moduli between two sets of RNS bases, and then implies the on-the-fly calcu-
lus of the required pre-computed constants. For the modular exponentiation, the
Montgomery Ladder algorithm is considered even if other algorithms can be exe-
cuted by our co-processor. The successive modular multiplications are computed
with the RNS Montgomery algorithm [10] that needs two sets of k moduli due
to the base extension part. For this crucial operation in the Montgomery mul-
tiplication, one considers the fast approximation method [11], which is derived
from the Chinese Remainder Theorem. Moreover, hardware countermeasures
are adopted with randomization of the RAM addresses during the reading and
writing operations.

The rest of the paper is organized as follows. Section 2 give a brief state-of-
art about the use of RNS for the integration of public-key algorithms. Section 3
describes the hardware module we have designed and mapped into an FPGA.
Section 4 gives experimental results about the robustness of the RNS-RSA im-
plemented on our crypto-module. Finally, a conclusion is drawn in section 5.

2 Preliminaries

2.1 Residue Number System

In the Residue Number System [12], an integer X, is represented according
to a base B = (b1, b2, ..., bk) of relatively prime integers, called moduli. The
number X in base B is thus represented by a k-tuple of positive integers ⟨X⟩B =
(x1, x2, . . . , xk), where xi = X mod bi, i.e. the remainder of the division of X by
the modulo bi, denoted |X|bi in the sequel. Arithmetic operations (±,×) are then
performed modulo B =

∏k
i=1 bi. To recover the original number X (modulo B),

given the residues xi, one may apply the Chinese Remainder Theorem (CRT):

|X|B =

∣∣∣∣∣
k∑

i=1

Bi|xiB
−1
i |bi

∣∣∣∣∣
B

, where Bi =
B

bi

The forward conversion is a key step before starting any computation in
RNS. From the radix-2w representation of X =

∑n−1
j=0 Xj2

wj , the residues xi are
obtained, for all bi ∈ B, by:

xi = |X|bi =

∣∣∣∣∣∣
n−1∑
j=0

∣∣Xj |2wj |bi
∣∣
bi

∣∣∣∣∣∣
bi

, (1)

where the constants |2wj |bi are pre-computed for all i, j to speed up the forward
conversion in RNS hardware modules by computing all residues in parallel.



2.2 RNS Montgomery Exponentiation

The core of any RSA implementation is a modular exponentiation of x, namely
xe mod N is computed and e is the private exponent. This is the operation to
be protected! To deal with timing and SPA attacks, in this work we adopted the
Montgomery Ladder exponentiation version in RNS, as given in Algorithm 1.
One may observe that the computations are performed over two RNS bases A
and B.

The pre-computed terms for the modular exponentiation are B mod N and
B2 mod N in bases A and B. The operation MM(x, y,N,B,A) returns the RNS
Montgomery Multiplication result xyB−1 mod N in the two RNS bases A and B.
For this crucial operation, the recent improvement proposed in [13] was adopted
to accelerate the original method [11] by 18%. This acceleration is provided by
rearranging the computations within the so-called base extensions (BE). In [13],
two different strategies are proposed for that operation and, in our approach,
we adopted the fast approximation method, also called as Posch-Posch method
[14]. Given xi the elements of X in base B, where xi = X mod bi for i = 1..k,
the fast approximation method ensures the existence of a certain integer λ < k,
a CRT-correction coefficient, such that:

X =

∣∣∣∣∣
k∑

i=1

Bi|xiB
−1
i |bi

∣∣∣∣∣
B

=
k∑

i=1

Bi|xiB
−1
i |bi − λ.B (2)

and λ can be calculated by:

λ =

⌊
k∑

i=1

Bi|xiB
−1
i |bi

B

⌋
=

⌊
k∑

i=1

|xiB
−1
i |bi
bi

⌋
=

⌊
1

2w

k∑
i=1

|xiB
−1
i |bi

⌋
(3)

In Equation 3, |xiB
−1
i |bi/bi may be approximated by |xiB

−1
i |bi/2w as bi =

2w − ci, and ci > 0. The resulting RNS Montgomery algorithm using the fast
approximation base extension, with a cost of 2k+7 single multiplications at each
RNS moduli, is shown in Algorithm 2.

The RNS Montgomery algorithm requires a set of precomputed terms in RNS
basesA and B. The term Bi,jNB−1 refers to the computation |BNB−1/bi|aj and
Ai,j refers to the computation |A/ai|bj , for ∀i, j. The modular exponentiation
employing the Algorithm 2 ensures that Xe mod N < 2N .

Algorithm 1: RNS Montgomery Ladder Exponentiation

Data: x in A ∪ B, where A = (a1, a2, ..., ak), B = (b1, b2, ..., bk), A =
∏k

i=1 ai,

B =
∏k

i=1 bi, gcd(A,B) = 1, gcd(B,N) = 1 and e = (en−1...e1e0)2.

Result: z = xe mod N in A ∪ B
1 Pre-Computations: |B mod N |A∪B and |B2 mod N |A∪B

2 A0 = B mod N (in A ∪ B)

3 A1 = MM(x,B2 mod N,N,B,A) (in A ∪ B)
4 for i = n − 1 to 0 do
5 Aei

= MM(Aei
, Aei

, N,B,A) (in A ∪ B)

6 Aei
= MM(Aei

, Aei
, N,B,A) (in A ∪ B)

7 end
8 A0 = MM(A0, 1, N,B,A) (in A ∪ B)



Algorithm 2: RNS Montgomery Multiplication with Fast Approx. BE [13]

Data: x, y in A ∪ B, where A = (a1, a2, ..., ak), B = (b1, b2, ..., bk), A =
∏k

i=1 ai,

B =
∏k

i=1 bi, gcd(B,A) = 1, 1 ≤ x, y < N , B > 4N and A > 2N

Result: w = xyB−1 mod N (in A ∪ B)

1 Pre-Computations in A: B−1, Bi,jN.B−1 for i, j = 1..k, −B.N.B−1, A−1
j for j = 1..k

2 Pre-Computations in B: −N−1B−1
i for i = 1..k, Ai,j for i, j = 1..k, −A

3 s = |x.y|B∪A
4 ————————— Base extension 1 ——————————–

5 qbi = |si(−N−1B−1
i )|bi for i=1..k

6 f =

⌊(∑k
i=1 qbi

)
/2w

⌋
7 wai

= |siB−1 +
∑k

j=1 qbj (Bi,jNB−1) − f.B.N.B−1|ai
for i=1..k

8 ————————— Base extension 2 ——————————–

9 qi = |wai
(A−1

i )|ai
for i=1..k

10 f =

⌊(
2w−1 +

∑k
i=1 qbi

)
/2w

⌋
11 wbi

= |
∑k

j=1 qjAi,j − f.A|bi for i=1..k

2.3 RNS Bases Randomization - The LRA Countermeasure

DPA attacks explore the relation between the power consumption and the inter-
nal variables to recover the bits of the private key. The leak resistant arithmetic
(LRA) countermeasure [9] provides a way for completely masking the internal
computations and then protect against differential or correlation power (or EM)
analysis at arithmetic level.

Before each modular exponentiation, the two set of bases A and B (each of
size k) are randomly selected among a set of 2k integers. In this way, an in-
teger w (an intermediate result in the modular exponentiation represented in
the Montgomery domain) has C2k

k ≈ 22k/
√
πk different RNS representations

in bases A or B and it offers a high-level of randomization. These randomly
selected RNS bases are then used during the entire computation. The authors
of [9] also suggested to reinforce the robustness by selecting new bases during the
exponentiation, possibly before each MM. However, this second approach may
become much slower; it implies two additional MM each time new RNS bases
are chosen, or even four extra MM if the Montgomery Ladder is used for the
exponentiation. Here, the bases randomization are performed once before each
exponentiation, using Montgomery Powering Ladder as depicted in Algorithm 3.
In the application of LRA countermeasure, the on-the-fly computation of Mont-
gomery constants B mod N and B2 mod N is solved by using the pre-computed
term AB mod N (in A ∪ B) in the two first Montgomery multiplications. Note
the order of A and B in these two first calls of MM in Algorithm 3.

The RNS Montgomery Multiplication needs pre-computed constants related
to the random choice of RNS bases A and B. These pre-computed constants
must be obtained on-the-fly before each modular exponentiation. The LRA pre-
computations necessary for the Montgomery multiplication are:

a)
∣∣B−1

i

∣∣
bi

=

∣∣∣∣∏k
j=1 b−1

j

∣∣∣∣
bi

=

∣∣∣∣∣∣...∣∣∣∣b−1
0 .b−1

1

∣∣
bi
.b−1

2

∣∣
bi
...b−1

k

∣∣
bi

∣∣∣∣
bi



Algorithm 3: RNS Montgomery Powering Ladder with LRA [9]

Data: x in A ∪ B, where A = (a1, a2, ..., ak), B = (b1, b2, ..., bk), A =
∏k

i=1 ai,

B =
∏k

i=1 bi, gcd(A,B) = 1, gcd(B,N) = 1 and e = (en−1...e1e0)2.

Result: z = xe mod N in A ∪ B
1 Pre-Computations: |AB mod N |A∪B

2 A0 = MM(1, AB mod N,N,A,B) (in A ∪ B)
3 A1 = MM(x,AB mod N,N,A,B) (in A ∪ B)
4 for i = n − 1 to 0 do
5 Aei

= MM(Aei
, Aei

, N,B,A) (in A ∪ B)

6 Aei
= MM(Aei

, Aei
, N,B,A) (in A ∪ B)

7 end
8 A0 = MM(A0, 1, N,B,A) (in A ∪ B)

b)
∣∣A−1

i

∣∣
ai

=

∣∣∣∣∏k
j=1 a−1

j

∣∣∣∣
ai

=

∣∣∣∣∣∣...∣∣∣∣a−1
0 .a−1

1

∣∣
ai

.a−1
2

∣∣
ai

...a−1
k

∣∣
ai

∣∣∣∣
ai

c)
∣∣B−1

∣∣
ai

=

∣∣∣∣∏k
j=1 b−1

j

∣∣∣∣
ai

=

∣∣∣∣∣∣...∣∣∣∣b−1
0 .b−1

1

∣∣
ai

.b−1
2

∣∣
ai

...
∣∣b−1

k

∣∣
ai

∣∣∣∣
ai

d)
∣∣A−1

∣∣
bi

=

∣∣∣∣∏k
j=1 a−1

j

∣∣∣∣
bi

=

∣∣∣∣∣∣...∣∣∣∣a−1
0 .a−1

1

∣∣
bi
.a−1

2

∣∣
bi
...

∣∣a−1
k

∣∣
bi

∣∣∣∣
bi

e)
∣∣B∣∣

ai
=

∣∣∣∣∏k
j=1 bj

∣∣∣∣
ai

=

∣∣∣∣∣∣...∣∣∣∣b0.b1∣∣ai
.b2

∣∣
ai

...bk
∣∣
ai

∣∣∣∣
ai

f)
∣∣A∣∣

bi
=

∣∣∣∣∏k
j=1 aj

∣∣∣∣
bi

=

∣∣∣∣∣∣...∣∣∣∣a0.a1

∣∣
bi
.a2

∣∣
bi
...ak

∣∣
bi

∣∣∣∣
bi

And then, we obtain:

1.
∣∣ − N−1B−1

i

∣∣
bi

=
∣∣ − N−1

∣∣.∣∣B−1
i

∣∣
bi

and
∣∣ − N−1A−1

i

∣∣
ai

=
∣∣ − N−1

∣∣.∣∣A−1
i

∣∣
ai

, for i = 1..k

2.
∣∣Bi

∣∣
aj

=
∣∣B∣∣

aj
.
∣∣b−1

i

∣∣
aj

and
∣∣Ai

∣∣
bj

=
∣∣A∣∣

bj
.
∣∣a−1

i

∣∣
bj

, for j = 1..k

3.
∣∣BiNB−1

∣∣
aj

=
∣∣Bi

∣∣
aj

.
∣∣N∣∣

aj
.
∣∣B−1

∣∣
aj

and
∣∣AiNA−1

∣∣
bj

=
∣∣Ai

∣∣
bj

.
∣∣N∣∣

bj
.
∣∣A−1

∣∣
bj

, for j = 1..k

4.
∣∣ − B

∣∣
ai

=
∣∣B∣∣

ai
.
∣∣ − 1

∣∣
ai

and
∣∣ − A

∣∣
bi

=
∣∣A∣∣

bi
.
∣∣ − 1

∣∣
bi
, for i = 1..k

5.
∣∣ − BNB−1

∣∣
ai

=
∣∣ − B

∣∣
ai

.
∣∣N∣∣

ai
.
∣∣B−1

∣∣
ai

and
∣∣ − ANA−1

∣∣
bi

=
∣∣ − A

∣∣
bi
.
∣∣N∣∣

bi
.
∣∣A−1

∣∣
bi
, for

i = 1..k

Then, all constants |b−1
i |bj , |a

−1
i |aj , |b−1

i |aj , |a−1
i |bj for all i, j, | −N−1|A∪B,

|N |A∪B, | − 1|A∪B and the RNS base sets A and B should be pre-computed.
After the modular exponentiation, the result must be converted back to radix.

For the LRA countermeasure, the reverse conversion using CRT-based method
needs the on-the-fly computations of the values Bi and B in radix-2w form and it
represents a high level of complexity. In this case, it is adopted the Mixed-Radix
System (MRS) [12] for the RNS to radix conversion. The mixed-radix system is
a weighted representation of a RNS number. This method is computed in two
steps: first, the MRS representation of xi (RNS representation of X in B) is
obtained using the optimized Garner’s Algorithm [17], and all the pre-computed
values, the inverses |b−1

i |bj , are obtained independently of RNS bases random-
izations; second, the MRS result is converted to radix by applying the Horner’s
scheme, as also presented in [17]. The reverse conversion implies carry-based
arithmetic. However, the time spent for these operations is negligible compared
to the modular exponentiation.



3 Proposed and Developed Hardware

The proposed hardware computes the forward conversion (radix to RNS), the
LRA pre-computations, the modular exponentiation and the reverse conversion
(radix to RNS), using the same set of independent data-paths called RNS Units
depicted in Fig. 1. The implementation follows a similar schematic than that
proposed in [11] and improved in [16], called cox-rower architecture.

As described in section 2, the required LRA pre-computations, which com-
putes the pre-computed constants for the Montgomery multiplication in the
RNS bases A and B, needs a set of pre-computed values. To store them, the
RNS Units contain dual-port RAM memories. Then, each RNS Unit contains all
pre-computed elements of all moduli of A and B. It causes an overhead in terms
of memory, however speeds-up the on-the-fly pre-computations.

The core of each RNS Unit is the arithmetic logic unit (ALU), which com-
putes the modular addition/subtraction, modular products and carry-based arith-
metic operations in the reverse conversion (CRT or MRS). To accelerate the
modular reductions, we adopted the method proposed in [15]. This solution uses
pseudo-Mersenne numbers of the form bi = 2w − ci, where ci < 2w/2, for the
chosen set of RNS moduli. Then, to compute x mod bi one first performs the
following step twice:

x← (x mod 2w) + ci · (x/2w) (4)
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Fig. 1. RNS architecture block diagram.



Then x will be in the range of [0, 2w+1] and a final conditional subtraction
by bi returns the residual value. The coefficient ci is also an input of the ALU
block. As RNS bases randomizations (LRA) makes the RNS Units operate in
different moduli, all ci (for i = 1..2k) are stored in a ROM memory. Each RNS
Unit performs operations for one RNS channel of A and one of B; the selection of
these channels, and the respective coefficient ci, is defined by the random index
input from the control unit.

The architecture also contains an adder block, called f block, for computing
the f values in the two base extensions. This block basically sums up all input
values (qB in the first base extension and q in the second base extension) and
returns the k most significant bits of this sum, named f .

The hardware countermeasure also relies on the RAM access protection. Ac-
cording to the Algorithm 3 there are four registers (A0 in A, A0 in B, A1 in A
and A1 in B) for storing the intermediate values, resulting of modular multipli-
cation or squaring executions in the binary loop of the Montgomery Ladder. So,
for example, if a modular multiplication A0 = MM(A0, A1, N,B,A) is executed
when the exponent bit is 1, the reading and writing operations will be:

1. read(|A0|A,|A0|B,|A1|A,|A1|B)
2. write(|A0|A,|A0|B)

On the other hand, if a modular multiplication A1 = MM(A0, A1, N,B,A) is
executed when the exponent bit is 0, the reading and writing operations will be:

1. read(|A0|A,|A0|B,|A1|A,|A1|B)
2. write(|A1|A,|A1|B)

Note that same registers are read and different registers are written. EM analysis
based on localized EM radiations [18] or on the control and RAM leakages [20]
show that if the RAM accesses are unprotected, the private key bits can be
recovered using sophisticated SEMA or location-based EM attacks. In order to
randomize the register’s position, and consequently the addresses, where the
intermediate results A0 and A1 (in A and B) are stored, we propose the scheme
depicted in Fig. 2 in all RNS Units.

Considering the first modular multiplication A0 = MM(A0, A1, N,B,A).
The control reads the registers A0 and A1 (in A and B) from the RAM address
0h+j, 1h+j, 2h+j and 3h+j (indicated by ’r’) and instead of storing the modular
multiplication result A0 (in A and B) in the same positions (0h+j and 1h+j ), A0
is stored in random positions 5h+j, 6h+j, indicated by ’w’. Since the exponent
bit ei = 1, the next operation is a modular squaring A1 = MM(A1, A1, N,B,A).
The control reads the registers A1 (in A and B) from addresses 2h+j and 3h+j
and instead of storing the result in the same position, it is placed at random
address spaces 4h+j, 7h+j. In the next modular multiplication, the registers A0
and A1 will be read from the previous random positions. With this hardware
countermeasure, the storing position of intermediate values changes during the
modular exponentiation, blurring the EM emanations. Then, the side-channel
leakage due RAM memory addressing is suppressed, because the results are
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Table 1. Cycle Count and Synthesis Results.

RSA without protection RSA with LRA Overhead
RSA-512 Clock Cycles

LRA latency 0 1060 100%
Radix to RNS 48 48 0%
Mont. Expo. 78210 78210 0%
RNS to Radix 685 (CRT) 840 (MRS) 18%
Total 78943 80158 1%

Synthesis Results (*FPGA Utilization)
4-Input LUTs 17124 (28%*) 17769 (29%*) 3%
Slices 8717 (27%*) 9510 (30%*) 8%
18 × 18 Mults 104 (100%*) 104 (100%*) 0%
KB (RAM) 8.5 (5%*) 118 (66%*) 92%

always stored in different addresses. Next section shows practical EM attacks on
both unprotected and secured RAM.

Considering k the number of RNS moduli in each of the bases A and B,
the total number of clock cycles for a Montgomery multiplication is 2k + 37.
The LRA countermeasure needs an amount of 64k + 36 clock cycles for the
pre-computations. Table 1 summarizes the number of clock cycles for the 512
bits RSA, that is able to compute the CRT-RSA 1024 bits, and the synthesis
results for FPGA implementation (low-cost Spartan 3E family) including the
number of kilobytes that represents the pre-computed terms pre-stored before
the exponentiation and the memory space needed during the exponentiation. The
results are provided for the two RSA-RNS implementations. As indicated, there
is a time overhead of only 1% due to the LRA countermeasure. The memory
(kilobytes) and the area overheads (LUTs and Slices) due countermeasures are
92% and 3%, respectively.



4 Robustness to EM Analyses

Collision or chosen-messages pair attacks, threat modular exponentiations by
exploiting the existence of identical computations. Correlation electromagnetic
analysis (CEMA) seeks to recover the secret information by computing the corre-
lation between the EM traces and some guessed intermediate values manipulated
or not by the device according to the exponent bits.

To evaluate the relevance of the LRA and hardware countermeasures, we
first applied these attacks on an unprotected hardware design, i.e. an RNS-RSA
with fixed bases to set a robustness reference level. Then, we re-applied these
attacks on our protected implementation in order to quantify the robustness
enhancements. To generalize the notation of the acquired EM traces, we define
the following:

EM(TE ,x,e) =

{
EM(TM ,x,en−1),EM(TS ,x,en−1), ...,EM(TM ,x,e0),EM(TS ,x,e0)

}

where EM(TE ,x,e) is the set of all multiplication and squaring intervals during
a modular exponentiation with the exponent e = {en−1, en−2, ..., e1, e0}, input
message x and:

1. EM(TM ,x,ei) = EM trace of a modular multiplication (M) done during the
time window TM with the exponent bit ei;

2. EM(TS ,x,ei) = EM trace of a modular squaring (S) performed during the
time window TS with the exponent bit ei;

3. TE = time window of a full modular exponentiation.

We also define Vem(t, x) as being the variation of the EM field at the time t
of a modular exponentiation having x as input message.

The EM traces were collected with a measurement platform composed of: an
oscilloscope (bandwidth: 2.5 GHz; sampling rate: 40 GS/s), an amplifier with a
bandwidth of 200 MHz, a 200 µm probe, a motorized stage, an FPGA Spartan-3
XC3S1600 board and a PC to control the whole measurement setup.

4.1 EM Collision Attacks

Collision attacks are SPA like attacks based on the choice of pairs of messages.
Basically, an adversary has to measure the power consumption or the EM ema-
nations during the processing of these two chosen messages by the cryptosystem.
Then, he has to apply a sliding procedure at the two collected traces to detect,
by subtraction, the occurrence of an identical computation. Such collisions typi-
cally appear during the squaring operations of modular exponentiations. Several
collision attacks have been proposed in the literature. The Doubling Attack (DA)
[6] and Yen et al ’s Attack [7] collisions are observed in squaring operations and
apply on left-to-right exponentiation algorithms. Homma et al ’s Attack [8] is a
collision that also applies to right-to-left exponentiations contrarily to the DA
and the Yen et al ’ attack. As explained in [8], it is based on a different choice



of the input messages to provoke collisions in right-to-left and left-to-right ex-
ponentiation algorithms.

Because the Montgomery powering ladder algorithm is a left-to-right algo-
rithm, we did consider the Doubling Attack. Following the DA procedure, we
truncated, re-aligned and subtracted the EM traces and we confirmed the oc-
currence of the same intermediate modular squaring results. Figures 3(a) and
(b) show how to select and align traces related to the chosen messages in order
to have a reference and a target frame.

The first experiment was done on the unprotected RNS-RSA design, when
the RNS bases are always fixed. One averaged EM trace (20 trials) has been
necessary for each chosen message for identifying the occurrence of collisions
using our EM platform. Fig. 3(c) shows the result of a collision analysis on
the target RSA-RNS hardware implemented without countermeasures. Note the
amplitude of the differential trace is near to zero where redundant computations
are performed (depicted as ’region of interest’).
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Fig. 3. (a) Electromagnetic traces. (b) Electromagnetic traces alignment for collision
detecting. (c) Electromagnetic collision attack on RSA without protection and (d) with
RNS bases randomizations (LRA).

To illustrate the effect of our countermeasures, Fig. 3(d) shows the differen-
tial traces when DA was applied to the RNS-RSA with randomization of RNS
bases. As expected, collisions cannot be detected visually when countermeasures
are activated despite the use of average mode of the oscilloscope (20 trials). To
demonstrate the efficiency of the DA and quantify the effects of our countermea-
sures, we define a collision detection criterion by plotting the evolution of the
Signal-to-Noise Ratio (SNR) with the number of trials set for the averaging. Ac-
cording to the DA, if the exponent presents consecutive zero bits at ei and ei−1,
the EM traces EM(TS ,x,ei−1) and EM(TS ,x

2,ei) represent redundant squarings
(collision). The SNR was computed according to:

SNR = 20.log10
Psignal

Pnoise
= 20.log10

σ2
(EM(TS ,x,ei−1))

σ2
(EM(TS ,x,ei−1)−EM(TS ,x2,ei))

(5)



where σ2
(EM(TS ,x,ei−1))

is the variance of samples over the time window TS cor-

responding to a squaring operation and σ2
(EM(TS ,x,ei−1)−EM(TS ,x2,ei))

is the vari-
ance of the differential trace samples over the time window TS . We defined SNR1
when EM(TS ,x,ei−1) = EM(TS ,x

2,ei) (collision) and SNR2 when EM(TS ,x,ei−1)
̸= EM(TS ,x

2,ei) (no collision). As shown in Fig. 4a, if a collision occurs, SNR1
is significantly bigger than SNR2 because the denominator of Eq. 5 is almost 0
(suppression of the signal by the collision; only the noise remains) even with no
averaging.
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Fig. 4. SNR vs Number of averaged EM traces. (a) RSA without protection. (b) RSA
with RNS bases randomizations (LRA).

As shown in Fig. 4(b), collisions cannot be detected when randomization of
RNS bases countermeasure is activated, even when averaging over 1000 times
the two signals.

4.2 CEMA

Correlation EM Analysis (CEMA) aims at revealing the secret key K manipu-
lated by a circuit by analyzing the correlation between its EM emanations and
guesses on the secret key. The most important the correlation is, the most likely
the guess is. To apply a CEMA on an RSA the adversary should have the pos-
sibility to randomly generate the input data x of the RSA implementation to
be attacked or to observe cipher texts. At the same time, he has to measure the
variations of the EM field Vem(t, x) at time t. This done, he enters in the CEMA
procedure that starts by choosing a selection function.

Key Guess and Selection Function: in our case, the adversary, knowing that
the considered algorithm is the Montgomery Powering Ladder, may generate
8-bits guesses on the secret key, starting by the MSB. In this way, he has a man-
ageable set of sub-key guesses. These sub-key guesses generated, the adversary
computes for each guess k, the corresponding variations of the power consump-
tion at a chosen time of the course of the algorithm, using the Hamming Weight
Model W (x, k). This time typically corresponds to the computation of an inter-
mediate value by the algorithm that depends on the sub-key. For any RSA, these
intermediate values could be the Montgomery multiplication results. However,
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Fig. 5. Correlation Electromagnetic Attack on hardware RSA-RNS without counter-
measures and (b) with LRA countermeasure with secured RAM accesses.

for RNS-RSA, the adversary must know the set of bases A and B. If this is
not the case, he has first to perform a long and tedious CEMA on the forward
conversion (radix to RNS conversion) to recover them. In this case, the guesses
on the selection function are the values of the RNS bases itself, instead of the
private key bits as used in the classic CEMA.

Assuming known these RNS bases, the latter may now predict the power
consumption variations (and therefore the EM field variations) with the manip-
ulated data x for each key guess k. As the Montgomery multiplication results are
obtained in parallel, he has to choose one RNS channel to compute the Hamming
weight. Assuming n is the register width, the selection function follows the linear
model d(x, k) = W (x, k)−n/2. This is done for each guess of the 8-bits sub-key.

The CEMA is expected to return an estimate k̂ of the key by identifying the
guess leading to the highest correlation value during the course of the algorithm.
The correlation is computed between d(x, k) and EM trace Vem(t, x) of single
measurements as function of time t :

c(t, k) =

∑
i(d(xi, k) − d(xi, k))(Vem(t, xi) − Vem(xi, t))√∑

i(d(xi, k) − d(xi, k))2
√∑

i(Vem(t, xi) − Vem(t, xi))2
(6)

To illustrate the effect of the RSA countermeasures against CEMA, we evalu-
ated the relation between the number of EM traces and the peak margin observed
for the correct guess of the sub-key related to incorrect ones. Figure 5(a) shows
the evolution of the peak of the correlation index c(t, k) with the number of
EM traces when the architecture performs modular exponentiations with fixed
RNS moduli. It is possible to guess the correct hypothesis after the processing
of 500 EM traces when RSA presents no countermeasures. With the LRA coun-
termeasure and secured RAM accesses, the correlation curve associated to the
secret key has still drowned among the other correlation curves even after the
processing of 10k traces.

4.3 RAM Memory Randomization

The LRA countermeasure offers a high level of randomization for the inter-
nal variables. Collisions and CEMA attacks are defeated because the Hamming



Weight of an internal variable can not be estimated to find the secret. Consid-
ering that an RSA hardware design is usually composed by arithmetic block
(ALU), control (CPU), bus and memories (RAM, ROM), one may find some
sources of leakages. The control and memories also performs executions depend-
ing on the exponent bits, mainly regarding the values of the memory addresses.
The RAM leakages, in the case of Montgomery Ladder, will be generated by
different addressing values for reading and writing multiplication or squaring re-
sults. Then, simple EM analysis, template attacks [22] or attacks based on a sin-
gle execution (SE) of exponentiations [21][4][19], may explore the leakage caused
by RAM addressing in the Montgomery Ladder and others SPA-protected ex-
ponentiation algorithms. SE attacks on exponentiation are also a threat against
classical algorithmic countermeasures like message or exponent blinding, how-
ever they depend on the quality of the measured traces. If the SNR is very
reduced, meaning that the trace contains a big amount of noise, the probability
of recovering leaking information from a single trace is quite low. The analyses
developed here illustrate the design vulnerabilities related to RAM access when
the hardware countermeasure by addressing randomization is disregarded.

Initially, an adversary can do as follows: considering the exponentiation is
always performed with a fixed exponent. He sends random messages x to the
device and collects an averaged EM trace representing the multiplication when
the exponent bit is 1 [EM(TM , x, 1)] and another representing the multiplication
when the exponent bit is 0 [EM(TM , x, 0)]. The adversary may then obtains the
differential trace Ediff = EM(TM , x, 0)−EM(TM , x, 1) which may reveals the
leakages of control and RAM accesses, as illustrated in Fig. 6(a). The leakage
is indicated by higher amplitudes during the RAM reading (r) and writing (w)
executions. The procedure adopted by the adversary is:

1. Consider EM(TE , x, e) the trace samples of a full modular exponentiation;

2. Consider {EM(TM , x, ei) } the set of all trace samples of size TM correspond-
ing to the multiplications at the exponent bits ei;

3. Set EM(TM , x, en−1) as the referential trace, where en−1 = 1 and compute
the differential traces Ediff = EM(TM , x, en−1) - EM(TM , x, en−1−i), for
i = 0 : n− 1.

4. Differential traces Ediff with higher amplitudes (higher variance) indicates
the subtraction EM(TM , x, 1)-EM(TM , x, 0).
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The same procedure can be verified in Fig. 6(b) by subtracting the EM traces
of modular squarings when the RAM addressing is not randomized. Following
the notations of Alg. 2, the amplitudes at the first samples of the differential
traces represent the multiplications s = x.y in the two RNS bases A and B and
RAM memory is accessed in order to read the values x and y. The modular
multiplication results wA and wB must also be stored in the RAM and this
activity is indicated in the differential trace by higher amplitudes representing
the RAM writing. Fig. 6(c) and (d) show the differential EM trace obtained after
randomizing the RAM addresses. As we can see, these leakages were suppressed.

Now, if the exponent is randomized (er = e + r.ϕ(N)), the attack pro-
cesses single traces. Template and SE attacks assumes that for each multipli-
cation EM(TM , x, 0) or EM(TM , x, 1) there is at least one sampled point in
time ti for which the amplitude of EM emanations follows a normal distribution
N(µM0, σM0) for EM(TM , x, 0) and N(µM1, σM1) for EM(TM , x, 1). In an ad-
vantageous scenario, the point ti may be accurately the amplitude of the EM
emanation during the RAM access. To justify this model, we acquired 10000
EM traces from the RSA design mapped on the FPGA, when the private key is
known. Fig. 7(a) shows the histogram of the amplitude (in mV ) during a fixed
point where the architecture performs memory access by writing the multipli-
cation results in the RAM. The sample points ti during memory accesses follow
a normal distribution with different means µM0, µM1 and standard deviations
σM0, σM1. Yet, Fig. 7(b) illustrates the histogram during the fixed point ti where
the architecture performs a RAM writing execution after the squarings.
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randomized RAM and (c)(d) randomized RAM addressing.

With RAM addressing randomization, the same points ti for EM(TM , x, 0)
and EM(TM , x, 1) present similar distributions, meaning the SNR is reduced and
SE attacks are more difficult now. Fig. 7(c) and (d) show the normal distribution
for multiplication and squaring, respectively. Note the average and standard
deviation are very close even for different exponent bits.



5 Conclusion

In this paper, a performance and robustness evaluation of an RSA cryptocore im-
plemented with RNS was proposed. We evaluated countermeasures at algorith-
mic, arithmetic and hardware levels in order to provide protection against side-
channel analysis. The Montgomery Powering Ladder exponentiation is adopted
in order to protect against simple side-channel analysis. We show that collision-
based attacks remain efficient against an RSA-RNS. To defeat sophisticated SPA
and collision attacks, we implemented countermeasures at arithmetic and hard-
ware levels, by randomizing the RNS bases and the RAM memory addresses,
respectively. The time overhead due to countermeasures is about 1%.
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