Efficient and First-Order DPA Resistant
Implementations of KECCAK

Begiil Bilgin®?, Joan Daemen!, Ventzislav Nikov?, Svetla Nikova3,
Vincent Rijmen?, and Gilles Van Assche!

1 STMicroelectronics, Belgium
2 NXP Semiconductors, Belgium
3 KU Leuven, ESAT/COSIC and iMinds, Belgium,
4 University of Twente, DIES, The Netherlands

Abstract. In October 2012 NIST announced that the SHA-3 hash
standard will be based on KECCAK. Besides hashing, KECCAK can
be used in many other modes, including ones operating on a secret
value. Many applications of such modes require protection against side-
channel attacks, preferably at low cost. In this paper, we present thresh-
old implementations (TI) of KECCAK with three and four shares that
build further on unprotected parallel and serial architectures. We im-
prove upon earlier TI implementations of KECCAK in the sense that
the latter did not achieve uniformity of shares. In our proposals we do
achieve uniformity at the cost of an extra share in a four-share ver-
sion or at the cost of injecting a small number of fresh random bits for
each computed round. The proposed implementations are efficient and
provably secure against first-order side-channel attacks.

Keywords: KECCAK, side-channel attacks, threshold implementation

1 Introduction

Keccak [0] is the best-known family of sponge functions. They can
be used in a wide range of modes covering the full range of symmet-
ric cryptographic functions [4]. These functions can take as argument a
secret key (e.g., encryption, Message Authentication Code (MAC) com-
putation, authenticated encryption, etc.) and require their internal state
to remain secret for security (e.g., pseudorandom sequence generators).
Such functions are subject to side-channel attacks.

A Differential Power Analysis (DPA) attack, which is a very pow-
erful side-channel attack, exploits the dependencies between the instan-
taneous power consumption of a device and the intermediate results of
a cryptographic algorithm. Since the security of cryptographic primi-
tives inevitably relies on the fact that an adversary does not have ac-
cess to intermediate computation results, any even partial knowledge

of intermediate computation results can lead to a complete breakdown
of security, e.g., by revealing the key. Several countermeasures against
DPA [12] have been proposed on different levels. For example, a circuit
design approach that aims to balance the power consumption of differ-
ent data values has been proposed in [19]. Another popular method is to
randomize the intermediate values of an algorithm by masking, namely
on algorithm level [2l9], at the gate level [I0J20] or in combination with
circuit design approaches [17]. Since the amount of information that is
leaked by hardware is unknown, the security proofs are based on an ide-
alized hardware model, resulting in requirements on the hardware that
are very expensive to meet in practice.

In a threshold implementation [I4y15], the sharing can have three
properties: correctness, non-completeness and uniformity. Correctness is
an obvious requirement which simply states that the sum of the output
shares of a sharing for a function f equals f applied to the sum of the
input shares as in boolean masking. Non-completeness states that each
output share of a function is independent of at least one input share.

When the input shares are uniformly distributed, then a correct and
non-complete sharing is provably immune to first-order DPA even in
presence of glitches [I4/15]. In a sequential computation, e.g., such in
a function composed of rounds or in multi-stage implementations of S-
boxes, the output shares will be used as input in another stage of the
computation. Hence, it is also interesting to preserve the uniformity of
the shares. As a first option, a sharing can be uniform, which means
that the output shares are uniform if the input shares are uniform. As
another option, uniformity of the output shares can be obtained by the
use of fresh randomness. This last option is also called re-masking and
has been done before, e.g., for the TT of AES in [I3]. Eventhough re-
masking can restore the uniformity of the input shares, and with it the
provable security agasint first-order DPA, this requires fresh randomness
on each round, which may become expensive in practice.

The designers of KECCAK proposed a hardware architecture that
offers protection against first-order DPA [3]. They employ the threshold
implementation method with three shares, but it is not uniform and
hence not provably secure against first-order DPA.

Contribution. In Section [3| we propose an alternative way for re-
masking that requires less random bits than the straightforward re-
masking approach as described in [I3]. In Sectionwe propose a sharing
that uses four shares that achieves uniformity of sharing without the in-
troduction of fresh randomness. In Section [5| we provide the area cost
and the maximum frequency of our unprotected and threshold imple-
mentations for fully parallel and slice-based architectures. We show that

the area requirement for our unprotected implementations are signif-
icantly smaller than the previous KECCAK implementations and have
higher frequency. Moreover, the threshold implementations with serial
architecture can be considered within the limits of a lightweight imple-
mentation. In addition, we discuss a way to reduce the area cost of the
threshold implementations at the cost of extra randomness. First, we
briefly recall the components of KECCAK in Section [2]

2 Introduction to Keccak

KEcCcAK is a function with variable-length input and arbitrary-length
output based on the sponge construction [4]. In this construction, a b-
bit permutation f is iterated. First, the input is padded and its blocks
are absorbed sequentially into the state, with a simple XOR operation.
Then, the output is squeezed from the state block by block. The size of
the blocks is denoted by r and called the bitrate. The remaining number
of bits ¢ = b — r is called the capacity and determines the security level
of the function.

The simplest use case of a sponge function is to use it as a hash
function. However, a MAC function can be built by taking the concate-
nation of a secret key and a message as input. It is also possible to use
a sponge function as a stream cipher. To this purpose, it suffices to use
the secret key and a nonce as input so that the resulting output can be
used as a key stream. More modes of use are described in [5].

Seven permutations, denoted KECCAK-f[b], are defined with width
b = 25w ranging from 25 to 1600 bits, with w increasing in powers of
two. The state of KECCAK-f[b] is organized as a set of 5 x 5 X w bits with
(x,y, z) coordinates. Coordinates are taken modulo 5 for z and y and
modulo w for z. A row is a set of 5 bits with given (y, z) coordinates, a
column is a set of 5 bits with given (z, z) coordinates and a lane is a set
of w bits with given (z,y) coordinates. Moreover, the set of 5 x 5 bits
with given z coordinates is called a slice.

The round function of KECCAK-f[b] consists of the following steps,
which are only briefly summarized here. For more details, we refer to
the specifications [6].

— 6 is a linear mixing layer that adds a pattern depending solely on
the parity of the columns of the state.

— p and 7 displace bits without altering their value.

— x is a degree-2 non-linear mapping that processes each row indepen-
dently. It can be seen as the application of a translation-invariant

5-bit quadratic S-box:

Uay,z) & Uay,z) T (Ae+1y.2) T D@t2y,)-
— ¢ adds a round constant.

The number of rounds in KECCAK-f is determined by the width b
of the permutations. It is 12 for KECCAK-f[25] and increases by two for
each doubling of the size. So KECCAK-f[1600] has 24 rounds.

3 Achieving uniformity with limited extra randomness

In this section, we focus on the three-share implementation proposed
in [3]. A value x is shared as (A,B,C) if t = A+ B + C in Fj. Seen
as random variables over F%, shares (A, B, C) are said to be uniform if
and only if Pr[A + B + C = z] = 1 and for any fixed values a,b € F%,
Pr[A = a, B = b] = 272", This definition is slightly more restrictive than
the one in [I4/15], as we do not consider probability distributions over
native values but only over their shared representation. As the compu-
tation of cryptographic primitives such as KECCAK is deterministic, this
restriction does not play a role here.

3.1 The original three-share TI implementation of x

The non-linear step of the KECCAK round function is called y. In [7]
we proposed a three-share TI implementation called x’. We denote the
three shares by A, B and C and the position of the bit within a row by
i (to be taken modulo 5):

A} xi(B,C) £ Bi + (Biy1 4+ 1)Biya + Bi11Civa + Biy2Ciy1,
Bl < Xi(C,A) £ Ci + (Cix1 +1)Civa + Cip1Aira + Ciy2Aiyr, (1)
Ci + xi(A, B) & Ai + (Aiv1 + 1) Aia + A1 Bio + Aira Bt
This maps a 15-bit vector (A, B, C) to a 15-bit vector (A’, B, C"). Upon
inspection, we found that this mapping is not invertible and hence not

uniform [14/15]. The consequence is that even if (A, B,C) is a uniform
sharing of a native value z, (A’, B’,C") is not a uniform sharing of x(z).

3.2 Straightforward injection of fresh random bits

KECCAK- f[1600] has 320 rows. For a three-share TI implementation,
this means the application of Eq. 320 times per round.

To convert (A’, B’,C’) into a uniform sharing again, we can inject
random bits. Re-masking is based on the following lemma.

Lemma 1. Let (A, B,C) be n-bit shares (not necessarily uniform) of a
fized native value and (X,Y, Z) be uniform m-bit shares. Let (D, E, F) be
uniform n-bit shares statistically independent of (A, B,C) and (X,Y, Z).
Then, (A+D,X),(B+E,Y),(C+F, Z)) are uniform n+m-bit shares.

Proof. First, since A+ B+ C, D+ E+ F and X +Y + Z take a fixed
value with probability one, so does (A+B+C+D+E+F, X +Y + 7).
Then, it suffices to verify that for each fixed value a +d, z,b + e, y:

PrlA+ D=a+4+d,B+E=b+e, X =2,Y =y

:ZPr[D:d,E:e]Pr[A:(a+d)+d,B:(b+e)+e,X:x,Y:y]
d,e

=223 " Pr{A=(a+d)+d,B=(b+e)+e, X =2, =y
d,e

=27 Pr[X =2, =y
:272(n+m).

We get a realization of x that satisfies the uniformity property at the
cost of 2 uniformly distributed random bits P;, S; per bit of the state.
The implementation of y becomes:

A}« x;(B,C) + P+ S,
Bj + xi(C,A) + P, (2)

Eq. (2) can be seen as the addition of (x}(B,C), x;(C, A), x;(A, B)) and
(P; + S;, P;, S;). The result is uniform thanks to Lemma (1] as (P; +
Si, P;, Si) is a uniform sharing of the native value 0 obtained from inde-
pendently drawn random bits.

Although from a theoretical point of view this re-masking method
solves the uniformity issue raised above, the solution is not satisfactory
since it requires a RNG which generates many high-quality random bits
at each clock cycle.

3.3 Less randomness per row

In this section we reduce the number of required fresh random bits per
round by using specific properties of x’.

The function x in KECCAK operates on 5-bit rows. It can be seen as
a specific case of a convolutional mapping operating on an n-bit circular
array with updating function z; < x; + (241 + 1)2;42. Next Lemma is
a general result that holds for any value n.

Lemma 2. If the input (A, B,C) to X' is shared uniformly, the output
truncated to any n— 2 consecutive bits, e.g., (A, B',C")o..n—3, is shared
uniformly.

Proof. First, consider (A, s, Bl,_5,Cl_3). It is the result of summing
(Bpn-3,Cp—3, Ay—3) with bits computed from A, B and C' in positions
n—2and n — 1. As (Bp_3,Cph—3, Ay—3) is a uniform sharing of z,_3
independent of input bits in positions n — 2 and n — 1, LemmalI] applies
and hence (4! _5, B! _5,C! _4) is a uniform sharing.

Assuming (A’, B, C")i+1..n—3 is a uniform sharing, we can prove
that (A’,B’,C");. n—3 is a uniform sharing. (A, B}, C]) is the result
of summing (B;, C;, A;) with bits computed from (A, B,C)it1. it2. As
(B;,Cy, A;) is a uniform sharing of z; and is independent of input bits
in positions i + 1 and i + 2 and of (4’, B',C");}1..n—3, Lemmal/[l] applies
and hence (A’, B',C");. n—3 is a uniform sharing. This can be extended
till (A/,B/,Cl)omn_g. O

Further (cyclic) extensions to include (A’, B, C"),—1 or (A, B',C"),,—2 is
not possible as (B —2, Cr—2, Ap—2) is not independent of (A", B, C")o..n—3
and Lemma [T] no longer applies.

Lemma [2] says that the truncated output with two successive bits
removed is uniform. As a consequence, one can repair uniformity using
only 4 fresh random bits P, o, P,_1, Sn—2, Sp—1. In particular, we just
apply Eq. with P, =5; =0 for i <n — 2.

We would like to point out that this result can also be obtained
using virtual variables as proposed in [8]. Namely, let us consider each
of the first two equations of x as equations depending on one more
variable Y and Z, respectively. Let (A;, B;, C;) be a sharing of z; and
(Y1,Y2,Y1+Y2), (Z1, Z2, Z1+ Z3) be a (therefore virtual) sharing of Y, Z
then exactly the same result is obtained as in Lemma [2} 4 additional bits
suffice to make the sharing uniform.

We decreased the number of fresh random bits per round from 10
to 4 bits per row. However, for KECCAK-f[1600] this is 320 x 4 = 1280
bits, still too expensive in practice.

3.4 Jointly satisfying uniformity

In this section we consider the uniformity at the level of the full state
rather than in the individual rows. We propose a TI implementation of
x with interaction between the rows that achieves almost uniformity at
the level of the full state, greatly reducing the required number of fresh
random bits per round.

Let us for convenience number the rows with index j = y + 5z.
The idea is to make the sharing at the output of row j 4+ 1 uniform
by using input at row j. In straightforward way, we add (A + B, A, B)
at the input of row j to the output (A4’, B’,C") of row j 4+ 1. This is
again a straightforward application of Lemma [I] Note that to satisfy the
independence required by Lemmal[l] the last row still requires injection of
four fresh random bits for achieving uniformity, as in Eq. . The circuit
complexity can be reduced greatly by combining this with Lemma [2} As
a matter of fact, we have to add (A + B, A, B) at the input of row j to
the output (A’, B’,C") of row j + 1 in only two successive bit positions.
Care must be taken in the bit positions used in each row so as to be able
to rely on Lemma

The above reasoning points out that each row individually can be-
come uniform. The key point, however, is to show that the joint appli-
cation on the entire state yields a uniform realization of y. This is what
the theorem below will show.

We denote the three shares of the whole state by (A, B,C'), and
a 5-bit row of the state as (AW, BU) CU)) with j € Zs,. Then, the
implementation of y becomes:

AW o\ (BW) 0y 4 AVTY 4 U,
B xi(CD, AD) + 477, 3)

7

/9 \h(AD) By 4 BUTY,

if j > 0 and i € {3,4}. Otherwise, Eq. applies when j = 0, and
Eq. suffices for positions 7 < 2.

Theorem 1. If the (whole state) input (A, B,C) to Eq. (3) if j > 0
and i € {3,4}, to Eq. (9) if j =0 and i € {3,4} and to Eq. ifi <2,
is shared uniformly, then the (whole state) output (A’, B',C") is shared
uniformly.

Proof. We can apply Lemma [I| recursively, with j starting at j = 5w —1
and going down to j = 0. Everytime, the reasoning is to show that
if (A/U+L-Sw=1) g+ 5w=1) cr(G+1..5w=1)) is yniform, then it is also
uniform for rows j to bw — 1.

Following Eq. , the sharing (A’0), B'U), ")) is obtained by adding
(x'(BY, CW),x'(CD, A0 ' (AD, BY) and (AU-D4+BU-D_ AG-1) BU-1))
for bit positions i € {3,4}. The latter expression is a uniform sharing of 0
and independent of the rows with indexes j and higher. From Lemma 2]

(x'(BYW,CW), x'(CW), AU (AW, BY)) is already uniform when re-
stricted to bit positions 0 to 2. The conditions of Lemma [I] are thus
satisfied and (A’G-5w=1) B/G--5w=1) C1(.-5w=1)) j5 yniform

If 5 = 0, the same reasoning applies, except that bit positions ¢ €
{3,4} are obtained as in Eq (2). O

The cost is four random bits per round, some additional XORs, regis-
ters and extra routing. As far as randomness is concerned, this amounts
to 96 bits for the 24 rounds of KECCAK-f[1600], which is small com-
pared to the 3200 random bits needed to represent the input state in
three shares.

4 Achieving uniformity with four shares

A uniform 3-share threshold implementation for x or for any of its affine
equivalent is not found yet. We present a uniform sharing of y with 4
shares. For 1 = 0,1, 2,4, we have:

A} < B+ By + ((Bit1 + Ciy1 + Dig1)(Biga + Ciya + Dig2)),
Bj < Ci + Ciya + (Aiy1(Ciga + Dig2) + Aiy2(Cig1 + Dig1) + Aip1Aira),
Cj + D+ Djyo+ (Aix1Biyo + Ait2Bit1),
Dj + Aj+ Aipo,
(4)

and for the remaining 3rd coordinate function we have:

Al < B3 + Bo + Co + Do + ((By + Cs + Da)(Bo + Co + Do)),
B} + C3 + Ao + (A4(Co + Do) + Ao(Cy + Dy) + AgAy),

Cé < D3+ (A4By + ApBy),

Dé — Ag.

(5)

We found this sharing by using Theorem 2 of [§]. Namely, we first
searched through all affine equivalent S-boxes of , i.e., x” = x(4A(z)),
where A(z) is an affine permutation and we found the ones that can be
shared with a direct sharing. Next, we applied the corresponding inverse
affine transformation to the found direct sharing to generate a uniform
sharing for the function y. We chose the one that has the smallest area
over all the candidates. Therefore, this uniform sharing (although de-
rived and close to direct) is not a direct sharing and that is why the
shares can not be computed in a circular manner.

5 Hardware implementations

There are several reports on different implementations of unprotected
KECCAK-f that uses different platforms, architectures and libraries [I].
In this work, we provide unprotected (plain) and threshold implementa-
tions of KECCAK- f with a round-based (parallel, Fig.|1|) and a slice-based
(serial, Fig. [2|) architecture. We used ModelSim to verify the correctness
of our implementations and Synopsys with FARADAY, FSAOA-D and
FSCOH-D libraries which are standard cell libraries tailored for UMC
0.18um and UMC 0.13pm logic processes respectively to observe and
compare the accurate area cost and maximum frequency with the pre-
vious works. For all our designs, we also provide the results with NAN-
GATE 45nm standard cell library which is free and can be used for
further comparison. The D flip-flops that take the output of a 2 x 1
MUX as input are implemented as scan flip-flops to reduce the area.

In the following sections, we first describe the unprotected KECCAK
architectures. Then, we build our threshold implementations on those
architectures.

5.1 Unprotected implementations

In our parallel implementation (Fig. , we fixed the rate to be at most
1024 bits. The architecture of the round function KECCAK-f for this
implementation is straightforward with 320 parallel instances of x. The
function 6 is implemented in a slice-based manner. Namely, the 5-bit
XOR of every row in each slice (i.e., the column parity) X;, where i €
{0,...,63} is calculated in parallel [7]. For each slice, the rotated values
of X; and X;_1 are XORed. This new value is concatenated five times to
generate a 25-bit value which will then be XORed to its corresponding
slice. With this method, the 6 function can be calculated with a low
cost. The rest of the linear layer, i.e., p and 7, are executed on the whole
1600-bit state as a simple wiring and the output in each round is written
to a 1600-bit register. Hence, one iteration of KECCAK-f[1600] takes 24
clock cycles.

On the other hand, the serial implementation (Fig. |2)) operates on
the 25-bit slices. It takes 25 bits in each clock cycle starting from slice
0. The input is written to the register Rgs after the implementation of
0, which takes as input the 5-bit XOR of every row of each input slice in
the mentioned clock cycle and the previous cycle with the exception of
the first slice. This is repeated for 64 cycles as the data in the registers
are shifted from R;y; to R; for i € {0,...,62}. 6 for the first slice is
completed in the 64th clock cycle together with the last slice. p and 7

np absorb&rnd)

M 1600

Fig.1: Schematic of the round-based implementation of KECCAK- f

are simple wirings executed on the same clock cycle as well. We can
consider this one round of 64 cycles as the initialization round. For the
following rounds, the input to # is the output of the five y functions
executed in parallel on the slice Ry followed by the XOR of the round
constant. The output is taken from the output of the round constant
injection starting from the first clock cycle of the 25th round. With this
implementation, one iteration of KECCAK-f[1600] takes 64 x 25 = 1600
clock cycles and costs around 10kGE in area. We should note that it is
possible to have implementations that work on 2 or 4 slices per cycle
and are faster but require larger area as a trade-off. In this paper, we
focus on a small implementation.

Both of these unprotected implementations are noticeably smaller
than the implementations reported so far which use standard cell li-
braries for state storage and still provide a high frequency. On the other
hand, the smallest design so far, that is proposed in CHES’13 [16] uses
RAM macros and requires more clock cycles for one iteration. More
detailed comparison for after synthesis results is given in Table

Fig. 2: Schematic of the slice-based implementation of KECCAK- f

10

5.2 Threshold implementations

We propose two different types of threshold implementations. In the
first type, we use as little random bits as we can. Namely, except for
the initial sharing, we use at most four bits of randomness per round.
In the second type, however, we relax this restriction on using minimum
amount of randomness in order to reduce the area. In all these versions,
we assume that the input shares are provided from an outside source,
such that the sum of the shares is the unshared message.

For the first type of TI, we implement two versions as described in
Section [3] and [4] and we use three and four shares, respectively, through-
out the entire implementations. Hence, we need respectively three and
four times the registers compared to the unprotected implementation.
The linear layer is also tripled (and quadrupled), such that each works on
one share only. During the y operations, these shares are used together
as described in —. The round constant is inserted in one share only.
In the case of the parallel three share implementation, we need 640-bit
extra registers to store the re-masking masks since we need to complete
the re-masking one clock cycle later as described in Section [3] Also, be-
cause of this re-masking, the output is ready one clock cycle after the
last x operation therefore one KECCAK-f takes 25 clock-cycles.

As expected, for the parallel implementations the cost of the combi-
national logic exceeds the cost of the register, since there are too many
instances of 6 and y. Even though these implementations are fast, the
parallel threshold implementations are quite big and can no longer be
called efficient implementations, when applied to bigger versions of KEC-
CAK.

When the serial implementations are considered, the register cost is
the dominant cost in the architecture whereas the 8 and x layers together
is only 4% of the overall implementation (Table . Note that for the
three-share implementation, we need to keep the random bits from the
previous y function to the next (as described in Section in every clock
cycle which requires 4-bit register. Also, for proper re-masking, we need
to use an extra 10-bit register to store the values after the x operation
which leads to a decrease of one clock cycle per round in speed.

The threshold implementations of the serial architecture have the
same size as the unprotected parallel implementation. One can, of course,
have an implementation operating on more than one slice to increase the
speed with a relatively small cost.

! Uses RAM macros

11

Table 1: Synthesis results for different implementations of Keccak

Area (kGE) Rand. bit | Clock | Freq.

Design State 6 X ANDs/XORs Other ‘ TOTAL | per round | Cycles | MHz
UMC 0.18um standard cell library
Parallel 9.0 93 7.0 8.1 0.1 33.5 - 24 572
Parallel-3sh 27.2 27.8 554 314 3.5 145.3 4 25 516
Parallel-4sh 36.3 37.1 68.8 31.9 0.1 174.2 - 24 513
Serial 10.1 0.1 0.1 0.2 0.3 10.8 - 1600 555
Serial-3sh 304 04 0.8 0.7 0.8 33.1 4 1625 | 553
Serial-4sh 40.5 0.6 1.0 0.7 0.3 43.1 - 1600 572
UMC 0.13um standard cell library
Parallel 80 86 64 7.5 0.1 30.6 - 24 855
Parallel-3sh 24.0 25.7 52.8 29.4 3.3 135.2 4 25 746
Parallel-4sh 32.0 34.2 61.6 29.7 0.1 157.6 - 24 735
Serial 10.0 0.1 0.1 0.2 0.2 10.6 - 1600 752
Serial-3sh 300 04 0.8 0.7 0.7 32.6 4 1625 | 820
Serial-4sh 40.0 0.5 0.9 0.7 0.3 42.4 - 1600 | 775
NANGATE 45nm standard cell library

Parallel 90 6.4 5.6 7.0 0.1 28.1 - 24 690
Parallel-3sh 27.2 19.2 40.6 25.9 3.7 116.6 4 25 592
Parallel-4sh 36.3 25.6 48.7 28.7 0.1 139.4 - 24 588
Serial 12.2 0.1 0.1 0.2 0.2 12.8 - 1600 | 775
Serial-3sh 36.8 03 0.6 0.5 0.8 39.0 4 1625 | 645
Serial-4sh 49.0 0.4 0.8 0.6 0.3 51.1 - 1600 | 633

UMC 0.18um standard cell library

Parallel-[I8] | N/A N/A N/A N/A N/A | 56.7 - | 25 | 488

STM and UMC 0.13um standard cell library

Parallel

KECCAK team N/A N/A N/A N/A N/A 48.0 - 24 526
Serial-[11 N/A N/A N/A N/A N/A 20.0 - 1200 | N/A
Serial-[16] N/A N/A N/A N/A N/A 5.9 - 15427 | 61

5.3 An architecture with 2 shares for the linear part

Working on three or four shares throughout the whole implementation
leads to a high area since the size of the state is big as a result of
adopting the 1600-bit permutation. Furthermore, the cost of the linear
0 layer is very close to the register cost as we converge to the parallel
implementation (Table [1)) because of multiple XORs per bit. For this
second type of threshold implementation, we propose a way to reduce
the area at the cost of extra random bits.

We can use two shares for the linear part A of the KECCAK-f. Then
we face the problem of increasing or decreasing the number of shares
for the nonlinear layer. The re-sharing from 2 to 3 shares can be done
as in Fig. one clock cycle before going through the x layer as these

12

three new shares need to be written into registers to avoid leakage. Note,
that we do not anymore need to have a uniform x implementation as
this re-sharing will also serve as re-masking in the input of the nonlinear
function. Therefore, we will only consider the y implementation with
three shares and direct sharing. Moreover, reducing the number of shares
from 3 to 2 can be done by only a single XOR. as shown in Fig. [3b| since
linear layers do not require uniform input shares.

my B my— b3 az ba

az b g ——s Tb
mzj—’ 2 2 1

ai b] ——
9 ! ! A

(a) 2to 3 (b) 3to 2

Fig. 3: Resharing

With this approach, we will need 1 more clock cycle per round for
the round-based architecture and 10 extra bits of randomness for each
instance of the x function. Applying the method in a straightforward
way will cost 3200 bits of extra randomness. However it is possible to
use the idea of Section [3| and borrow randomness from the input of the
previous instances of the x function.

For a parallel implementation, this approach decreases the cost of the
linear layer and the ANDs and XORs only. We need to put a register
between the 2-to-3 re-sharing and the x layer, in order to safeguard
against the possibility that some of the masks do not arrive on time.
Moreover, there is the extra cost of the XORs during the re-masking
that compensates the area saved in the linear layer. In the end, such a
parallel implementation will not save area and moreover it needs more
randomness which is not preferable.

For a serial architecture, this approach is more efficient. To give an
example from our slice-based implementation, we need to increase the
number of shares when we shift the data in the register R; to the register
Ry and decrease the number of shares with the shift from Rgs to Rgo.
Even though the 6 layer is still applied on three shares, the registers
from R; to Rgo only requires two instances. Besides, the extra cost of
re-masking is small since we only need to increase or decrease the number
of shares on one slice. As a result, this implementation will require 30%
less area for the cost of four extra random bits per round and 96 extra
random bits for one KECCAK-f as we need 10 bits of randomness per
round.

13

6 Conclusions

We presented the first implementations of KECCAK that satisfy the three
properties of threshold implementations. At the moment, it seems that
at least four shares are required in order to be able to satisfy simulta-
neously correctness, non-completeness and uniformity. Implementations
with three shares require extra random bits in each round. We showed
how the amount of extra random bits can be brought down to as lit-
tle as four per round. To illustrate our work, we made six hardware
implementations and compared their merits. We have shown that even
though threshold implementations increase the area significantly, by us-
ing a serial architecture instead of a parallel one, this increase can be
compensated.

Acknowledgments

We would like to thank the anonymous reviewers for their constructive
comments. In addition, this work has been supported in part by the
Research Council of KU Leuven (OT/13/071), B. Bilgin was partially
supported by the Flemish Government by the project G.0B421.13N., and
V. Nikov was supported by the European Commission (FP7) within the
Tamper Resistant Sensor Node (TAMPRES) project with the contract
number 258754.

References

1. ATHENa: Automated tool for hardware evaluation.
http://cryptography.gmu.edu/athena/.

2. M.-L. Akkar and C. Giraud. An implementation of DES and AES, secure against
some attacks. In CHES, volume 2162 of LNCS, pages 309-318. Springer, 2001.

3. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Building power analy-
sis resistant implementations of KECCAK. Second SHA-3 candidate conference,
August 2010.

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Cryptographic sponge
functions, January 2011.

5. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Duplexing the sponge:
single-pass authenticated encryption and other applications. In Selected Areas in
Cryptography (SAC), 2011.

6. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The KECCAK reference,
January 2011.

7. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer. KECCAK
implementation overview, September 2011.

8. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stiitz. Threshold implemen-
tations of all 3 x 3 and 4 x 4 S-boxes. In CHES, volume 7428 of LNCS, pages
76-91. Springer, 2012.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In CRYPTO, volume 1666 of LNCS, pages
398-412. Springer, 1999.

Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, volume 2729 of LNCS, pages 463—-481. Springer,
2003.

Elif Bilge Kavun and Tolga Yalcin. A lightweight implementation of KECCAK
hash function for radio-frequency identification applications. In Proceedings of
the 6th international conference on Radio frequency identification: security and
privacy issues, RFIDSec’10, pages 258-269, Berlin, Heidelberg, 2010. Springer-
Verlag.

P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener,
editor, Advances in Cryptology — Crypto ’99, volume 1666 of Lecture Notes in
Computer Science, pages 388-397. Springer, 1999.

A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the limits: A
very compact and a threshold implementation of AES. In EUROCRYPT, volume
6632 of LNCS, pages 69-88. Springer, 2011.

S. Nikova, V. Rijmen, and M. Schléffer. Secure hardware implementation of
nonlinear functions in the presence of glitches. In P. J. Lee and J. H. Cheon,
editors, ICISC, volume 5461 of Lecture Notes in Computer Science, pages 218—
234. Springer, 2008.

S. Nikova, V. Rijmen, and M. Schléffer. Secure hardware implementation of
nonlinear functions in the presence of glitches. J. Cryptology, 24(2):292-321,
2011.

Peter Pessl and Michael Hutter. Pushing the limits of SHA-3 hardware imple-
mentations to fit on RFID. In Springer, editor, Cryptographic Hardware and
Embedded Systems - CHES 2013, 14th International Workshop, Santa Barbara,
California, USA, August 20-23, 2013, Proceedings., volume 8086 of Lecture Notes
in Computer Science, pages 126 — 141. Springer, 2013.

T. Popp and S. Mangard. Masked dual-rail pre-charge logic: DPA-resistance
without routing constraints. In CHES, volume 3659 of LNCS, pages 172-186.
Springer, 2005.

Stefan Tillich, Martin Feldhofer, Mario Kirschbaum, Thomas Plos, Jérn-Marc
Schmidt, and Alexander Szekely. Uniform evaluation of hardware implemen-
tations of the round-two SHA-3 candidates. In The Second SHA-3 Candidate
Conference, Santa Barbara, USA, August 23-24, 2010, pages 1 — 16, 2010.

K. Tiri and I. Verbauwhede. A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In DATE, pages 246-251. IEEE Com-
puter Society, 2004.

E. Trichina, T. Korkishko, and K.-H. Lee. Small size, low power, side channel-
immune AES coprocessor: Design and synthesis results. In AES Conference,
volume 3373 of LNCS, pages 113-127. Springer, 2005.

15

	Efficient and First-Order DPA Resistant Implementations of Keccak

