
USENIX Association

Proceedings of the
5th Smart Card Research and Advanced

Application Conference

San Jose, California, USA
November 21–22, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Protected Division Algorithm

Marc Joye and Karine Villegas

Gemplus Card International, Card Security Group, France

fmarc.joye, karine.villegasg@gemplus.com, http://www.gemplus.com/smart/

Abstract

Side-channel analysis is a powerful tool for retriev-
ing secrets embedded in cryptographic devices such
as smart cards. Although several practical solutions
have been proposed to prevent the leakage of sensi-
tive data, mainly the protection of the basic crypto-
graphic operation itself has been thoroughly investi-
gated. For example, for exponentiation-based cryp-
tosystems (including RSA, DH or DSA), various
exponentiation algorithms protected against side-
channel analysis are known. However, the expo-
nentiation algorithm itself or the underlying crypto-
algorithm often involve division operations (for com-
puting a quotient or a remainder). The �rst case ap-
pears in the normalization (resp. denormalization)
process in fast exponentiation algorithms and the
second case appears in the data processing before
(resp. after) the call to the exponentiation opera-
tion.

This paper proposes an eÆcient division algorithm
protected against simple side-channel analysis. The
proposed algorithm applies equally well to software
and hardware implementations. Furthermore, it
does not impact the running time nor the memory
requirements.

Keywords. Division algorithms, smart cards, side-
channel analysis, SPA protected implementations.

1 Introduction

Signi�cant progress has been made these last years
to secure cryptographic devices (e.g., smart cards)
against side-channel analysis. Side-channel anal-
ysis [2, 3] is a clever technique exploiting side-
channel information (e.g., power consumption) to
retrieve secret information involved in the execution

of a carelessly implemented crypto-algorithm. The
threat is now clearly understood by implementors
and various countermeasures have been suggested.

The basic operation underlying most public-key
crypto-algorithms is the modular exponentiation.
To name a few, this includes the RSA cryptosys-
tem, the DiÆe-Hellman key exchange or the DSA
signature scheme. The resistance of modular expo-
nentiation with respect to side-channel analysis is
discussed in many papers (e.g., see [4] where both
attacks and counter-measures are presented). A
far less studied operation is that of division: to
the authors' best knowledge, there is no paper in
the public literature addressing this issue. This
is most unfortunate as nearly all implementations
of exponentiation-based cryptosystems use the divi-
sion operation as well.

Several specialized modular multiplication algo-
rithms (and therefore the corresponding modular
exponentiation algorithms) require a normalization
step involving an integer division. Typical exam-
ples include Barrett algorithm [5] or Quisquater al-
gorithm [6] (see also [7]). For computing a�b mod m,
these two algorithms take on input a normalization
factor of the form � = b2t=mc. If the division algo-
rithm used for evaluating � is prone to side-channel
analysis then the value of m (or some related infor-
mation) can be recovered. When m is a secret data,
this compromises the security of the cryptosystem.
For example, this occurs when RSA decryption (or
signature) is speeded up through Chinese remain-
dering [8] because then modulus m is successively
one of the two secret RSA primes, p1 and p2. A
second example of division algorithm manipulating
secret data is when RSA is used with Chinese re-
maindering and operand x in the computation of
xd mod fp1; p2g is �rst explicitly reduced modulo pi
prior to the exponentiation xd mod pi, for i = 1; 2.

An algorithm commonly used for computing in-
teger divisions is the classical binary pencil-and-
paper method (or a variant thereof). This algo-

rithm presents the advantage of requiring no ex-
tra memory requirements. However, as we will see,
it may yield the value of quotient q = a div b dur-
ing its computation by simple side-channel analysis.
This paper is aimed at transforming this algorithm
into a division algorithm protected against simple
side-channel analysis while preserving the eÆciency
(memory-wise) of the classical algorithm. Actually,
the resulting algorithm will not only be protected
against simple side-channel analysis but will fur-
ther be faster than the classical algorithm, with the
same memory requirements. As a result, we obtain
a protected division algorithm that is few greedy in
memory and is particularly suited to a hardware im-
plementation or to a software implementation in a
constrained environment like a smart card.

The rest of this paper is organized as follows. The
next section reviews the classical binary pencil-and-
paper division algorithm. Its security towards sim-
ple side-channel analysis is studied in Section 3.
Building on the pencil-and-paper method, we then
propose in Section 4 our protected yet more eÆ-
cient division algorithm. Finally, we conclude in
Section 5.

Disclaimer. This paper only addresses security
against simple side-channel analysis, that is, side-
channel analysis from a single measurement of cer-
tain side-channel information. In particular, it is
not concerned with di�erential analysis (such as
DPA) or more sophisticated methods.

2 Pencil-and-Paper Division Method

Given a and b on input, the binary pencil-and-
paper algorithm evaluates the quotient q = a div b
(alternatively, we use the notation q =

�
a
b

�
) and

the remainder r = a mod b. The binary repre-
sentations of a and b are respectively given by
a = (am�1; : : : ; a0)2 and b = (bn�1; : : : ; b0)2 with
bn�1 6= 0.

It is easy to see that the pencil-and-paper division
of two integers amounts to the simpler problem of
dividing a (n+ 1)-bit integer A by a n-bit integer b
and then to re-iterate the process [1]. We must have
0 � A=b < 2, which is satis�ed whenever bn�1 6= 0
(see above restriction).

Since we are working in basis 2, the two possible
values for the quotient bit bA=bc are 0 or 1. So we
subtract b from A and test whether the obtained
result is nonnegative; if so then bA=bc = 1, and
bA=bc = 0 otherwise. Remark that bA=bc = 1 if
and only if A� b � 0.

The length of r = a mod b plus the length of
q = a div b is smaller than or equal to (m+ 1) bits.
Indeed, the length of r is at most n bits since r < b;
and the length of q is at most (m � n + 1) bits
since q = ba=bc � ba=(bn�12

n�1)c = a div 2n�1 =
(am�1; : : : ; an�1)2, a (m � n + 1)-bit value. In or-
der to save memory, the quotient and remainder will
be written in the register containing a (augmented
with one leading bit).

Before:

ba

After:

br q

(n bits) (m� n+ 1 bits)

Figure 1: Memory con�guration.

It is useful to introduce some notations. For a k-
bit integer a, we denote by SHLk(a; 1) the operation
consisting in shifting a of one bit to the left; the
outgoing bit is a�ected to the carry. For two k-bit
integers a and b, we write ADDk(a; b) for the addition
of a and b; variable carry is set to 1 if there is a carry
in the addition and carry is set to 0 otherwise. Re-
mark that SHLk(a; 1) can equivalently be obtained
as ADDk(a; a). There is usually no subtraction oper-
ation available for large integers. The subtraction
of b from a is obtained by �rst computing the two's
complement of b, denoted by b, and then by adding
b to a. Indeed, if b is a k-bit integer then b+ b = 2k

and so a� b = a+ b (mod 2k). We write CPL2k(a)
the operation consisting in taking the two's comple-
ment of a k-bit integer a. Symbols _, ^ and � refer
to the bit-wise logical operations or, and and xor,
respectively. For a bit �, the negation of � (i.e., its
complementary value) is denoted by :�. Finally,
the notation lsb(a) refers to the least signi�cant bit
of an integer a.

We can now present the classical binary pencil-and-
paper division algorithm. On input a and b, this
algorithm computes both the values of a div b and
of a mod b. In order to work, a is arti�cially aug-
mented with one bit (initially set to 0) at the most

signi�cant position. Moreover, to ease the exposi-
tion, variable A represents the n most signi�cant
bits of a, i.e., A = (0; am�1; : : : ; am�n+1).

Input: a = (0; am�1; : : : ; a0)2
b = (bn�1; : : : ; b0)2

Output: q = a div b and r = a mod b
b CPL2n(b) /* b = \�b"*/
for j = 1 to (m� n+ 1) do

a SHLm+1(a; 1) /* Shift*/

� carry

A ADDn(A; b) /* Subtract*/

� � _ carry
if (:�) then /*Correction*/

b CPL2n(b)
A ADDn(A; b)
b CPL2n(b)

else lsb(a) = 1
endfor

b CPL2n(b)

Figure 2: Binary pencil-and-paper division algo-
rithm.

Remainder r is in A followed by the quotient q. The
correctness of the algorithm follows by observing
that if a SHLm+1(a; 1) generates a carry then
am = 1 (before shifting) and so b must be sub-
tracted; moreover if am = 0 (before shifting) and
A ADDn(A; b) generates a carry (i.e., A � b � 0
before the subtraction) then again b must be sub-
tracted.

Example 1 Suppose we want to compute a div b
and/or a mod b with a = 4096 = (1000000000000)2
and b = 81 = (1010001)2. The 2's complement of b

is b = (0101111)2. We obtain r = 46 = (101110)2
and q = 50 = (110010)2.

a �

0 1 0 0 0 0 0 0 0 0 0 0 0 0 ?

Shift 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Subtract 1 1 0 1 1 1 1 0
Correction 1 0 0 0 0 0 0
Shift 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Subtract 0 1 0 1 1 1 1 1 1
Shift 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0
Subtract 0 0 0 1 1 0 1 1 1
Shift 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0
Subtract 1 0 0 1 0 0 1 0
Correction 0 0 1 1 0 1 0
Shift 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0
Subtract 1 1 0 0 0 1 1 0
Correction 0 1 1 0 1 0 0
Shift 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0
Subtract 0 0 1 0 1 1 1 1 1
Shift 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0
Subtract 1 0 1 1 1 0 1 0
Correction 0 1 0 1 1 1 0 0 1 1 0 0 1 0

3 Security Analysis

This section explains why security may be a concern
when implementing a division algorithm.

Back to the binary pencil-and-paper division al-
gorithm (Fig. 2), we see that the quotient is con-
structed bit by bit. According to its value, each
quotient bit is obtained by a di�erent sequence of
operations. At step j in the for-loop, if the ob-
tained quotient bit, say qj , has value 0 then the
following operations were performed:

� a shift [SHLm+1(a; 1)]

� an addition [ADDn(A; b)]

� a \correction" [CPL2n(b); ADDn(A; b); CPL2n(b)]

along with some logical operations; whereas if qj = 1
then the following two operations were performed:

� a shift [SHLm+1(a; 1)]

� an addition [ADDn(A; b)]

along with some logical operations. If it is possi-
ble to distinguish these two sequence of operations
during the course of the algorithm then the value
of quotient bit qj (and thus of the whole quotient
q) can be recovered. Such a means may be pro-
vided by monitoring the power consumption (i.e.,
the side-channel is the power consumption). The
next �gure represents a power trace resulting from
the execution of the pencil-and-paper division algo-
rithm on a chip equipped with a crypto-coprocessor.
The operands are large numbers and the various op-
erations (shift, addition or two's complement) are
performed by the crypto-coprocessor.

Figure 3: A power trace of the pencil-and-paper
division algorithm.

We can identify two di�erent patterns in Fig. 3: one
corresponds to the case qj = 0 (i.e., a longer pattern
involving an additional \correction") and the other

one corresponds to the case qj = 1. Therefore, the
value of quotient q = a div b can easily read from
the power trace.

If quotient q (or related data) is secret, this above
implementation is not secure. Consider the exam-
ple of RSA implemented with Chinese remainder-
ing. Let N = p1p2 be an RSA modulus (the val-
ues of p1 and p2 are secret). The computation of
y = xd mod N is carried out as y = CRT(y1; y2)
where yi = xi

d mod pi with xi = x mod pi, for
i = 1; 2. Suppose that x1 and x2 are computed
by the binary pencil-and-paper algorithm as given
in Fig. 2. Then, by simple power analysis1 (SPA),
the values of q1 := bx=p1c and q2 := bx=p2c can
be recovered from the corresponding power traces.
Suppose further that x = N�r for some 0 < r < p1.
Then

q1 =

�
N � r

p1

�
=

�
p2 �

r

p1

�
= p2 � 1

and so the secret RSA primes are given by p2 =
q1 + 1 and p1 = N=p2.

4 A Protected Method

The previous analysis illustrates that non-constant
code may reveal sensitive data, thereby compro-
mising the security of the cryptosystem. A �rst
idea to make the code constant consists in adding
some dummy operations and in making implicit the
if-then-else statement. Such a solution is how-
ever unsatisfactory as dummy operations penalize
the running time. This is especially true when the
dummy operations are time-consuming

Rather, we exploit the following observation. At
each iteration, the pencil-and-paper algorithm
(Fig. 2) computes a 2a � b 2m�n+1. In the case
of an unsuccessful guess (i.e., when � = 0), one has
to restore the value of a by setting A A + b.
This restoring step can be avoided by noting that
2(a + b 2�) � b 2� = 2a + b 2�. We then obtain the
non-restoring variant of the classical binary pencil-
and-paper division algorithm. An additional vari-
able, �0, keeps track of the value of bit � in the
previous iteration. Bit � keeps track of the `sign'
of b.

1That is, a side-channel analysis using a single power con-
sumption measurement as side-channel information.

Input: a = (am�1; : : : ; a0)2
b = (bn�1; : : : ; b0)2

Output: q = a div b and r = a mod b
�0 1; � 1
for j = 1 to (m� n+ 1) do

a SHLm+1(a; 1); � carry

if (�0)
then if (�) then b CPL2n(b); � 0

A ADDn(A; b); � � _ carry
else if (:�) then b CPL2n(b); � 1

A ADDn(A; b); � � ^ carry
if (�) then lsb(a) = 1
�0 �

endfor

if (:�) then b CPL2n(b)
if (:�) then A ADDn(A; b)

Figure 4: Non-restoring binary division algorithm.3

The previous algorithm does not behave regularly
and so may also be subject to side-channel analysis.
According to the values of � and of �0, register b
is unchanged or replaced by its two's complement.
A �rst step towards side-channel protection consists
in always performing a two's complement followed
by an addition, whatever the values of � and �0. To
this end, when register b needs not to be replaced by
its two's complement, a dummy two's complement
|on a register, say register c, that does not impact
the computation| is executed. We call daddr the
address of the register containing the value that will
be replaced by its two's complement (daddr will be
baddr or caddr).

It is also worth noting that � can be updated as
� �0(� _ carry) + (:�0)(� ^ carry), which can
equivalently be rewritten as

� (� ^ �0)� (� ^ carry)� (�0 ^ carry) :

Finally, noting that the shift operation sets the
least signi�cant bit of a to 0, the line [if (�) then

lsb(a) = 1] can be replaced by lsb(a) �.

We use � and
 variables to keep track of the `sign'
of the value contained in the registers located at
baddr and caddr , respectively. The convention is � =
0 (resp.
 = 0) when the value located at baddr
(resp. caddr) is the original value, and � = 1 (resp.

 = 1) when the value located at baddr (resp. caddr)
is the two's complement of the original value. We

3Again variable A represents the n most signi�cant bits
of variable a, i.e., A = (0; am�1; : : : ; am�n+1).

have the following truth table:

�0 �
 �

0 0 0 1 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 0 1

where-from we derive the outgoing values � :�0

and

 � �0 � �.

Putting all together, we �nally obtain the following
algorithm.

Input: a = (am�1; : : : ; a0)2
b = (bn�1; : : : ; b0)2

Output: q = a div b and r = a mod b
�0 1; � 1;
 1
for j = 1 to (m� n+ 1) do

a SHLm+1(a; 1) /* Shift*/

� carry; Æ �0 � �
daddr baddr + Æ(caddr � baddr)
d CPL2n(d) /* Two's complement*/

A ADDn(A; b) /* Addition*/

� (� ^ �0)� (� ^ carry)� (�0 ^ carry)
� :�0;

 � Æ; �0 �
lsb(a) = �

endfor

/* Final correction*/

if (:�) then b CPL2n(b)
if (:
) then c CPL2n(c)
if (:�) then A ADDn(A; b)

Figure 5: Our protected division algorithm.4

One may argue that our algorithm is not code-
constant because of the three last if-then state-
ments. We note however that the two �rst are not
mandatory to make the algorithm working but are
merely performed to reset the registers containing
b and c to their original values. Finally, the last
if-then only reveals the least signi�cant bit of the
quotient; when this is a secret value a dummy oper-
ation can be applied to mask the potential addition
ADDn(A; b).

4As in Figs. 2 and 4, variable A represents the n most
signi�cant bits of a (i.e., A = (0; am�1; : : : ; am�n+1)).

Example 2 We take the same example as before:
a = 4096 = (1000000000000)2 and b = 81 =
(1010001)2 (b = 0101111). As detailed below, we
obtain r = 46 = (101110)2 and q = 50 = (110010)2.

a � �

0 1 0 0 0 0 0 0 0 0 0 0 0 0 ? 1
Shift 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
CPL2n(b)
ADDn(A; b) 1 1 0 1 1 1 1 0 0
Shift 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0
CPL2n(b)
ADDn(A; b) 0 1 0 1 1 1 1 1 1 1
Shift 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1
CPL2n(b)
ADDn(A; b) 0 0 0 1 1 0 1 1 1 0
Shift 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0
CPL2n(c)
ADDn(A; b) 1 0 0 1 0 0 1 0 0
Shift 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0
CPL2n(b)
ADDn(A; b) 1 1 0 0 0 1 1 0 1
Shift 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
CPL2n(c)
ADDn(A; b) 0 0 1 0 1 1 1 1 1 1
Shift 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1
CPL2n(b)
ADDn(A; b) 1 0 1 1 1 0 1 0 0
CPL2n(b) (Final corr. on b)
Final corr: 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0

The corresponding power trace is given in Fig. 6.
Remark that the power trace is now the repetition of
a same pattern, regardless the value of the quotient
bit.

Figure 6: A power trace of our division algorithm.

Finally, as a side-e�ect, it is easy to see that, on
average, our protected algorithm outperforms the
classical pencil-and-paper method, with the same
memory constraints (cf. Fig. 1).

Table 1: Comparison with the classical method.

ADDn SHLm+1 CPL2n

Classical 3

2
(m� n+ 1) m� n+ 1 m� n+ 3

Protected m� n+ 3

2
m� n+ 1 m� n+ 2

5 Conclusions

This paper presented a new division algorithm pre-
venting simple side-channel analysis. The proposed
algorithm is well suited to a hardware implemen-
tation or to a software implementation in a con-
strained environment. Remarkably, it does not re-
quire additional resources (time or memory) and is
even faster than the classical binary method.

Obviously, we note that SPA-like analysis highly de-
pends on the hardware and special care must be
paid by the implementor. In this respect, the pro-
posed method can be seen as a useful framework
for designing protected and, as shown in the paper,
eÆcient division algorithms.

References

[1] D.E. Knuth, The Art of Computer Programming
{ Seminumerical Algorithms, Addison-Wesley,
2000.

[2] P. Kocher, \Timing attacks on implemen-
tations of DiÆe-Hellman, RSA, DSS, and
other systems," in Advances in Cryptology
{ CRYPTO '96, vol. 1109 of Lecture Notes
in Computer Science, pp. 104{113, Springer-
Verlag, 1996.

[3] P. Kocher, J. Ja�e, and B. Jun, \Di�eren-
tial power analysis," in Advances in Cryptol-
ogy { CRYPTO '99, vol. 1666 of Lecture Notes
in Computer Science, pp. 388{397, Springer-
Verlag, 1999.

[4] T.S. Messerges, E.A. Dabbish, and R.H. Sloan,
\Power analysis attacks of modular exponentia-
tion in smartcards," in Cryptographic Hardware
and Embedded Systems (CHES '99), vol. 1717 of
Lecture Notes in Computer Science, pp. 144{
157, Springer-Verlag, 1999.

[5] P. Barrett, \Implementing the Rivest Shamir
and Adleman public key encryption algorithm
on a standard digital signal processing," in Ad-
vances in Cryptology { CRYPTO '86, vol. 263
of Lecture Notes in Computer Science, pp. 311{
323, Springer-Verlag, 1987.

[6] J.-J. Quisquater, \Encoding system according to
the so-called RSA method, by means of a micro-

controller and arrangement implementing this
system." U.S. patent #5,166,978, Nov. 1992.

[7] A. Bosselaers, R. Govaerts, and J. Vande-
walle, \Comparison of three modular reduc-
tion functions," in Advances in Cryptology {
CRYPTO '93, vol. 773 of Lecture Notes in Com-
puter Science, pp. 175{186, Springer-Verlag,
1994.

[8] J.-J. Quisquater and C. Couvreur, \Fast deci-
pherment algorithm for RSA public-key cryp-
tosystem," Electronics Letters, vol. 18, pp. 905{
907, Oct. 1982.

